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The problem of the non-linear regression analysis is considered. The algorithm of the 
inductive model generation is described. The regression model is a superposition of 
given smooth functions. To estimate the model parameters two-level Bayesian Inference 
technique was used. It introduces hyperparameters, which describe the distribution 
function of the model parameters.  

 

Introduction 

Inductive model generation algorithms invoke 
the problem of models elements importance 
estimation. C. Bishop suggested a method [1] 
of evaluation the probability distribution 
function for the model parameters. The 
parameters of these functions are called 
hyperparameters. For each element of the 
model one must to estimate the probability 
distribution function and make a decision 
either particular element of the regression 
model important or not.  
The problem of the model comparison using 
hyperparameters was advanced after papers by  
D. MacKay and I. Nabney. The papers [3–6] 
and  [7] investigate hyperparameter 
optimization algorithms. 
In this paper an inductive model generation 
algorithm is described. It consists of the 
following steps. Data set, namely the values of 
several independent variables and one 
dependent variable are given. The set of 
terminal functions and optionally the set of 
initial models are given. The model parameters 
and hyperparameters are tuned with an 
optimization algorithm. For each model, the 
importance of superposition elements is 
evaluated. The importance depends on the 
values of the hyperparameters. Several best 
generated models are selected according to a 
target function. The selected models are 

modified and new models are generated 
according to generation rules. 
The hyperparameter values bring the 
information how to modify the models to 
improve them. 

Problem statement 

A sample set 1{( , )}N
n n nD y == x , of the 

independent variables P∈x R  and correspon-
ding depended variables y∈R  is given. A set 

{ | : ... }G g g= × × →R R R  of the smooth 
parametric functions ( , ,..., )g g= ⋅ ⋅b  is given.  
The set G  inductively defines a set of 
superposition }.{ ifF =  Each superposition if  
consists of no more than r  functions .g  
The superposition f  defines a parametric 
regression model  ).,( xwff =  The vector 

W∈w R  consists on concatenated parameter 
vectors of the functions 1,..., rg g , thus 

1 2 ... r=w b b b , where  is the vector 
concatenation.  
One must to select from the set F  a model if , 
which minimizes the given target function 

( | , , , )ip D fα βw . This function depends on 
the  sample set D , the model ( , )i if f= w x  
and additional parameters ,α β . The shape of 
the target function is defined by hypotheses on 
the sample set distribution. 
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The target function is defined as following. Let 
ν  be a random variable of the regression 
problem ( , )iy f ν= +w x . It has a Gaussian 
distribution of the variance νσ  and expectation 
of zero. Then according to the maximum 
likelihood method the target function is 

exp( ( | , ))( | , , , ) ,
( )

D i
i

D

E D fp D f
Z

βα β
β

−
=

ww  

where 2
νβ σ −=  and  ( )DZ β   is the normalizing 

constant. The error function DE  is the sum of 
residual squares of the model values if  and 
dependent variable values,  

2
1
( ( , ) ) .N

D i nn
E f y

=
= −∑ w x  

The model parameters MPw , which brings the 
maximum to the target function are called the 
most probable parameters.  

Inductive model generation 

The models are generated with the set of the 
primitive functions G  as following. The 
indices of the functions vg  are in the set  
V {1,..., }V= . The mapping : V Arι →  is 
given. The elements AAι ∈  are the every 
possible combinations of K from V, where 

1,...,K r= . The elements of the set 
{ ( )}A a kι ι=  have the indexes 1,...,k Kι= . 

Since Va∈ , the elements ( )a kι  correspond to 
the functions vg G∈ . For each Aι  consider the 
set of the incidence matrices ( )i Aιρ , i∈N . 
The index i  of the matrix ρ  defines a unique 
superposition if  of the functions g ; denoted 
as ( )i i Aιρ ρ= . The number of the elements of 
this superposition equals Kι . The incidence 
matrix 2:{1,..., } {0,1}i Kιρ →  defines the 
orgraph and the superposition if . The 
superposition is called acceptable if the 
following conditions are held. 
1. The orgraph iρ  is acyclic.  
2. The orgraph is one-connected, subject to 

1 1 1
( , ) ( ( )),K K K

il k k
l k s a kι ι ι

ιρ
= = =

=∑ ∑ ∑  where 
( )s s v=  is the number of arguments of   the 

function vg . The number of ones in the matrix  

iρ  equals the overall number of arguments of 
the superposition if . 
3. The number of arguments of every element 
of the superposition is equal to the number of 
arguments of the corresponded primitive 
function 

1
( , ) ( ( ))K

il
l k s a kι

ιρ
=

=∑  for each 1,...,k Kι= . 
The number of orgraph’s vertices adjoined to 
the k -th node is the number  ( ( ))s a kι  of 
arguments of the function vg , where 

( )v a kι= . 

Estimation of the model hyperparameters 

Consider the set of the competitive 
models 1,..., Mf f . When the data D   have 
come, the posterior probability ( | )iP f D  of 
the model could be defined with the Bayes 

theorem 
1

( | ) ( )( | )
( | ) ( )

i i
i M

j jj

p D f P fP f D
p D f P f

=

=
∑

,  

where ( | )ip D f  are predictions, which model 
can make about the data : 

( | ) ( | , ) ( | )i i ip D f p D f p f d= ∫ w w w . It is 
called the evidence of the model. 
The posterior probability of the parameters w  
of the model if  given sample set  D  equals 

( | , ) ( | )( | , )
( | )

i i
i

i

p D f p fp D f
p D f

=
w ww , where 

( | )ip fw  is the prior probability of the 
parameters of the initial distribution, and 

( | , )ip D fw  is the likelihood function of the 
model parameters. 
Introduce the regularization parameter α . It 
controls how well the model fits the data.  The 
probability of the parameters given 
hyperparameter α  equals 

exp( ( | ))( | , )
( )
W i

i
W

E fp f
Z
αα

α
−

=
ww , 

where α  corresponds the inverse variance of 
parameters, 2

Wα σ −=  and WZ   is the 
normalizing constant.  The requirements to 
small parameter values suppose the Gaussian 
posterior distribution with zero-mean. For 
given values of the hyperparameters α  and β   
the equation  (*) for a given model if  will be 
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exp( ( | ))
( , )

i

S

S f
Z α β
− w ,where ( | )i W DS f E Eα β= +w  

and SZ  is the normalizing constant.  To 
estimate the optimal values of the parameters 
w  and the hyperparameters ,α β  given model 

if  consider an iterative algorithm. One must 
find the values of the hyperparameters, which 
bring maximum to the posterior probability of 
the parameters and then execute the other 
calculations include probability of the 
parameters given data with fixed values of the 
hyperparameters. 
To specify the posterior probability 

( | , , )p D α βw , which uses the posterior 
distribution of parameters, one must 
approximate error function ( )S w  with the 
second degree Taylor series: 

MP 1 MP MP( ) ( ) 2 ( ) ( )S S A−≈ + − −w w w w w w , 
where the Hessian matrix 2A S= ∇ =  

2 .DE Iβ α∇ +  Substitute the approximate value 
of ( )S w  into (*) and denote MP∆ = −w w w , 
obtain

1 1( | , , ) exp( ( ) 2 ).T
Sp D Z S Aα β − −= − − ∆ ∆w w w w

Evaluate the constant SZ , which contain the 
hyperparameters. To estimate the 
hyperparameters one must optimize the 
function ( | , )p D α β  subject to α  and β : 
ln ( | , )p D α β =   
 MP 1 1 1 1

1
2 ( ) 2 .W

W jj
E Wλ α α− − − −

=
− − + +∑  Set the 

last statement equal zero and transform it. The 
statement for evaluation α  is 

MP 1
1

2 ( ) .W
W jj

E Wα α λ α −
=

= − +∑  Denote the 

deduction of the right part 
as 1

1
( )W

jj
γ α λ α −

=
= +∑ . Then the optimal 

value of β  equals MP2 .DE Nβ γ= −  

Model generation using hyperparameters 

The inductive generation of the regression 
models is executed iteratively. It involves the 
generated models and the set of the primitive 
functions. Before it starts, the set of the 
measured data D  and the set of the smooth 
functions G  were given. The initial set of the 

competitive models 1{ ,..., }Mf f  are given. 
Each model if  in the set is a superposition of 
the functions , 1,..., .ij ig j r r= ≤  The 
hyperparameter ijα  corresponds the element 

ijg  of the model if . It describes the initial 
probability distribution of the parameter vector 

ijb  of this function. The hyperparameter iβ  
corresponds to the model if . The initial values 
of the hyperparameter for i-th model are 
predefined according to the prior noise 
probability distribution function parameters. 
After the algorithm starts the following 
sequence of steps is executed. The sequence 
repeats the given number of iterations.  
1. Minimize the error functions ( )iS w  for each 
model if  with the Levenberg–Marquardt 
method [2]. Estimate the parameters MP

iw of 
the models.  
2. Define new values of the hyperparameters 

* 1( ) ( )ij i W ijW Eα γ −= − b , * 1( ) ( )i i D iN E fβ γ −= − . 
They based on the initial values of the 
hyperparameters. Repeat the steps 1 and 2 
until the parameters will be converged. 
3. According to the error function values select 

12 M−  best models to the further modification. 
Modify each model: find the element of the 
superposition with minimal value of the 
hyperparameters *

ijα ; replace it for the arbitrary 
primitive function g G∈ .  
4. Use the selected and the modified models in 
the next iterations. 

Conclusion 

The method of the inductive generation of the 
parametric regression models is described. The 
models are superposition of the given 
primitive functions. The model generation 
algorithm uses hyperparameters of the models. 
The hyperparameters are estimations of the 
model parameters distribution function. They 
show the importance of the models elements. 
The parameters and the hyperparameters are 
estimated with non-linear optimization 
methods.  
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