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The algorithm of the search for the optimal parametric regression model in a model
set is described. The model set is a set of the superpositions of given smooth functions.
To estimate the probability of the parameters two-level Bayesian Inference technique was
used. To illustrate the approach a problem of modelling a pressure in a spray chamber of
a combustion engine is described.

1. Introduction

The model search is the iterative “generation-selection” algorithm. The model generation rules
and the target function (the model selection criterion) are defined. The series of the competitive
models are generated. Each model is a superposition of the elements of a given set of smooth
parametric functions. After the model generation each element of superpositions accept its
importance hyperparameter. The model parameters and the hyperparameters are tuned in
turn. The target function for each model is evaluated. The best generated models are chosen
to be modified. The hyperparameter values bring the information how to modify the models to
improve them.

The problem of the search for the optimal regression model has a long history, though it
remains one of the most actual problems in the field of the pattern recognition. A.G. Ivakhnenko
in 1968 created the Group Method of Data Handling, GMDH [1]. According to this method,
a model of the optimal complexity is searched in the series of the generated models. For
example, to generate the models as the polynomials, Fourier series and the others functional
superpositions were used. A.G. Ivakhnenko and his successors created many model generation
algorithms and suggested model quality estimation methods.

To generate models one must decide either each element of the model important or not.
C.Bishop suggested in [2] the Bayesian regression method. It based on the evaluation the
probability distribution function for the model parameters. To do that he introduced the
hyperparameters — parameters for probability distribution function of a model parameters.
For each element of the model one must to estimate the Gaussian probability distribution
function and make a decision either particular element of the regression model important or
not.

To modify the models LeCun suggested [3] an optimal brain damage method. To improve
a model one must prune the less important elements of the model in case if the approximation
quality does not fall significantly. When the elements of the model is pruned one could estimate
an impact of those elements to the target function.
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The problem of the model comparison and selection was advanced after papers [4–6] by
D.MacKay. He suggests to use two-level Bayesian inference for model selection instead of an
information criterion, for example, Akaike Information Criterion. On the first level one computes
the probability distribution functions for the parameters of each model from a given set. On
the second level the model evidence is computed. According to this method the Occam rule is
the following: the probability of the complex model is less than the probability of the simple
model, if the values of the target function for these models are the same.

Let us pose the problem on the search of the optimal regression model as following. A
sample set {x1, ...,xN |x ∈ RM} of the independent variables and a set {y1, ..., yN |y ∈ R} of the
corresponding depended variables are given. Denote by D the data set {(xi, yi)}.

A set G = {g|g : R × ... × R −→ R} of the smooth parametric functions g = g(b, ·, ·, ..., ·)
are given. The first variable of g is the row vector of parameters b, the following are real-
valued variables considered as the independent variables. An arbitrary superposition specifies
a parametric repression model f = f(w,x). Let it includes no more than r functions g. It
depends on the independent variables x and on the parameter vector w. The vector w ∈ RW

consists of the attached parameter vectors of the functions g1, ..., gr, that is, w = b1
...b2

......
...br,

where
... is the sign of the vector attachment. Denote by Φ = {fi} the set of the superpositions,

which are inductively-generated by elements of the set G.
One must find the model fi, which brings the maximum to the probability

function p(w|D, α, β, fi). This function will be defined later. It includes the model fi = fi(w,x)
and its additional parameters α and β.

2. The regression model choice and target function

The general approach to the comparison of the non-linear models is the following. Consider
a set of competitive models f1, ..., fM . Denote by P (fi) the prior probability of the model fi.
When the data D have come, the posterior probability P (fi|D) of the model could be defined
with the Bayes theorem,

P (fi|D) =
P (fi)p(D|fi)∑M

j=1 p(D|fj)P (fj)
,

where P (D|fi) are predictions, which model can make about the data. It is called the evidence of
the model. The denominator of the fraction brings satisfaction to the condition

∑M
i=1 P (fi|D) =

1.
The probabilities of the models f1 and f2 the given data, could be compared as

P (f1|D)

P (f2|D)
=

P (f1)p(D|f1)

P (f2)p(D|f2)
. (1)

The left part p(D|f1)/p(D|f2) is the ratio between the evidence of the models. The
ratio P (f1)/P (f2) is the prior preference between the models. If there is no reason to make
different prior probabilities, one could compare the models using p(D|fi). In the parameter
space the evidence p(D|fi) is

p(D|fi) =

∫
p(D|w, fi)p(w|fi)dw.
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The posterior probability of the parameters w of the model fi given D equals

p(w|D, fi) =
p(D|w, fi)p(w|fi)

p(D|fi)
, (2)

where p(w|fi) the prior probability of the parameters, p(D|w, fi) is the likelihood function of the
model parameters. Denominator p(D|fi) is needed to satisfy the condition

∫
p(w|D, fi)dw = 1.

It is specified by the integral
∫

p(w′|D, fi)p(w′|fi)dw
′. Equations (2) and (1) are called the first

and the second level of the Bayesian inference.
Denote by ν the random variable of the regression model y = fi(b,x) + ν with additive

gaussian noise of variation σν and of zero expectation. Then the likelihood function is

p(y|x,w, β, fi) , p(D|w, β, f) =
exp(−βED(D|w, fi))

ZD(β)
,

where β = 1
σ2

ν
. The denominator ZD(β) is specified by

ZD(β) =

(
2π

β

)N
2

. (3)

The weighed error function in the data space is

βED =
β

2

N∑
n=1

(fi(xn)− yn)2. (4)

Introduce the regularisation parameter α. It controls how well the the model fits the data.
The probability of the parameters given hyperparameter α is

p(w|α, fi) =
exp(−αEW (w|fi))

ZW (α)
,

where α corresponds variance variance of parameters, α = σ−2
w and the normalizing constant ZW

is

ZW (α) =

(
2π

α

)W
2

. (5)

The requirements to small parameter values [7] suppose the gaussian posterior distribution
with zero-mean:

p(w) =
1

ZW

exp (−α

2
||w||2).

Since the variables α and β are the parameters of distributions of the model parameters further
they will be called hyperparameters. Eliminate the normalizing constant ZW since it does not
depend on the parameters w and evaluate the logarithm, then

αEW =
α

2
||w||2. (6)

This error function regularizes the parameters imposing a fine for the large values of the
parameters.
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For given values of the hyperparameters α and β the equation (2) for the given model fi

will be
p(w|D, α, β) =

p(D|w, β)p(w|α)

p(D|α, β)
.

Rewrite the error function as S(w) = αEW + βED, obtain

p(w|D, α, β, fi) =
exp(−S(w|fi))

ZS(α, β)
, (7)

where ZS is normalizing factor.

3. Model parameters evaluation
To evaluate the optimal values of the parameters w and hyperparameters α, β for the given
model fi one must integrate them. The posterior probability is

p(w|D) =

∫∫
p(w, α, β|D)dαdβ =

∫∫
p(w|α, β, D)p(α, β|D)dαdβ. (8)

The computational complexity of such kind of integration is very large. However the
integral could be simplified if suitable values of the parameters will be assigned. The
approximation of the integral is based on the following. The posterior probability of
the hyperparameters p(α, β|D) has a definite peak around most probably values of the
hyperparameters αMP, βMP. This approximation is known as the Laplace approximation [8].
Under such assumption the integral (8) is simplified to

p(w|D) ≈ p(w|αMP, βMP, D)

∫∫
p(α, β|D)dαdβ ≈ p(w|αMP, βMP, D).

One must find the values of the hyperparameters, which bring maximum to the posterior
probability of the parameters and then execute the others calculations include p(w|D) with
fixed values of the hyperparameters.

Tho specify the posterior probability p(w|α, β, D) one must approximate error
function S(w) with the second degree Taylor series:

S(w) ≈ S(wMP) +
1

2
(w −wMP)T A(w −wMP). (9)

In (9) there is no first degree term, since it is supposed that wMP defines the local minimum of
the error function:

∂S(wMP)

∂wξ

= 0

for each value of ξ. The matrix A is the Hessian matrix. It depends on the error function:

A = ∇2S(wMP) = β∇2ED(wMP) + αI.

Denote by H the first term of the right part of the equation, then A = H + αI.
Substitute the approximate value of S(w) into (7) and denote ∆w = w −wMP. Then

p(w|α, β,D) =
1

ẐS

exp

(
−S(wMP)− 1

2
∆wT A∆w

)
.
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Evaluate the constant ẐS which is necessary for the Laplace approximation:

ẐS = exp(−S(wMP))(2π)
W
2 (det A)−

1
2 . (10)

To maximize the function p(D|α, β) one has to vary the values of the hyperparameters α
and β. To do that one has to integrate the data distribution function over the parameter
space w:

p(D|α, β) =

∫
p(D|w, α, β)p(w|α, β)dw =

∫
p(D|w, α, β)p(w|α)dw, (11)

where the second integral is fare because the model parameters does not depend on the noise.
To simplify the computations assume that p(α, β) are distributed uniformly.

Using (4), (6), write (11) as

p(D|α, β) =
1

ZD(β)

1

ZD(α)

∫
exp(−S(w)))dw.

From (3), (5), (10) and the previous statement it comes

ln p(D|α, β) = −αEMP
W − βEMP

D − 1

2
ln |A|+ W

2
ln α +

N

2
ln β − N

2
ln (2π). (12)

To optimize this statement with variable α, one has to evaluate the derivative

d

dα
ln |A| = d

dα
ln

(
W∏

j=1

λj + α

)
=

d

dα

W∑
j=1

ln(λj + α) =
W∑

j=1

1

λj + α
= tr(A−1). (13)

In this statement λ1, ..., λW are eigenvalues of the matrix H. Since the error function is not a
quadratic function of the parameters (unlikely the linear of RBF regression) it is impossible
to evaluate the optimal value of α directly. The Hessian matrix is not a constant, it depends
on the parameters w. Since we accept A = H + αI for the vector wMP, which depends on α,
then the eigenvalues of H indirectly depend on α. Thus the statement (13) does not involve
the parameters of the model.

Using this approximation the derivative (12) of α equals

ln p(D|α, β) = −EMP
W − 1

2

W∑
j=1

1

λj + α
+

W

2α
.

Set the last statement equal zero and transform it. So one has the statement for evaluation α

2αEMP
W = W −

W∑
j=1

α

λj + α
. (14)

Denote the deduction of the right part as γ then

γ =
W∑

j=1

α

λj + α
.
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Those components λj for which α ¿ λj impacts γ more than the components for which
0 < λj ¿ α. Thus γ could be interpreted of the measure of the number of well-defined
parameters of the model.

To evaluate hyperparameter β consider the optimization problem (12). Denote µj the
eigenvalues of the matrix ∇2ED. Since H = β∇2ED, then λj = βµj and

dλj

dβ
= µj =

λj

β
.

So,
d

dβ
ln |A| = d

dβ

W∑
j=1

ln(λj + α) =
1

β

W∑
j=1

λj

λj + α
.

Evaluate the derivative as in the previous case of α, one defines the optimal value β as

2βEMP
D = N −

W∑
j=1

λj

λj + α
= N − γ. (15)

Further the optimal values of the hyperparameters α and β evaluation and usage is described.

4. The algorithm of the search for the optimal model
The search for the optimal model is executed iteratively. Before it starts, the set of the measured
data D and the set G of the basic functions g are given. The initial set of the competitive
models F0 = {f1, ..., fM |f ∈ Φ} are given. Each model fi in the set is a superposition of the
functions {gij}ri

j=1. The hyperparameter αij corresponds the element gij of the model fi. The
hyperparameter βi corresponds to the model fi. The initial values of the hyperparameters are
predefined. After the algorithm starts the following sequence of steps is executed.

1. Evaluate the model parameters wMP
i . To do that the method of the scaled conjugate

gradients [9] minimizes the error function Si(w) for each model fi, i = 1, ..., M .
2. Using (14) and (15) evaluate the hyperparameters αnew

ij and βnew
i . The hyperparameter βi

of the function fi is evaluated in the data space. It eqials

βnew
i =

N − γi

ED(fi)
.

The hyperparameter αij is evaluated in the parameter space for each function gij in the
superposition fi. It equals

αnew
ij =

W − γi

EW (bij)
.

The evaluation of the parameters and the hyperparameters are repeated until the local minimum
of Si(w) will be found.

3. Generate the successor models f ′1, ..., f
′
M using the following rules. Repeat for each index i.

Chose a function gij with the minimal value of αij in the model fi. Chose a random function gξk

in the random model fξ. Generate the successor f ′i by replacing gij for gξk.
4. Each model f ′i could be modified. The probability η of the modification is given. For each

model fi replace the function gij with the minimal value of αij by the random function from
the set G.
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Fig. 1. The source sample and the sample approximated with the model № 2

5. Join the successor and predecessor models in one set and select M best models according
to the error function S. These models will be used in the further iterations.

The algorithm stops either when the target function reach a given value or when the sequence
repeats a given number of times.

5. The numerical experiment
The proposed algorithm was used to solve the following application problem. The pressure in
the combusting camera of a diesel engine was measured during series of the pressure cycles. The
results of the measurement was represented as a sample set. The source date are represented
at the fig. 1 by the solid line. The dashed line shows the recovered data. The x-axis shows the
independent variable, the y-axis shows the dependent variable. The data contain 4000 samples.
To verify the obtained model 118 pressure curves were used.

Experts made the set G which were used to generate models. The functions from the set
are listed in the table 1. The set F0 of the initial models was also given by the experts.

Several thousands of the models were generated during the numerical experiment. Three
models were selected. They are shown in the table 2. The quality of the models were evaluated
with the error functions ρ1, ρ2. The model complexity is the number of parameters in the
vector w. The values of the errors are obtained by the average for 118 pressure curves. The
error function ρ1 is mean squared error

ρ1 =

√√√√ 1

N

n∑
i=1

(
yi − f(xi)

max(yi)

)2

,

the error ρ2 is maximal relative error

ρ2 = max
i=1,...,N

|yi − f(xi)|
max(yi)

.
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№ Function Description Parameters
Function of two variables, g(b, x1, x2)

1 plus y = x1 + x2 –
2 times y = x1x2 –
3 divide y = x1/x2 –

Function of one variable, g(b, x1)
4 multiply y = ax a
5 add y = x + a a

6 gaussian y = λ√
2πσ

exp
(
− (x−ξ)2

2σ2

)
+ a λ, σ, ξ, a

7 linear y = ax + b a, b
8 parabolic y = ax2 + bx + c a, b, c
9 cubic y = ax3 + bx2 + cx + d a, b, c, d
10 logsig y = λ

1+exp(−σ(x−ξ)) + a λ, σ, ξ, a

T a b l e 1. The set G of the basic functions

The row “Description” of the table 2 shown the tree-like model structure. Let the
second model be an example. This model is the superposition of eight functions f2 =
g1(g2(g3(g4(g5(x), g6(x)), g7(x)), x), g8(x)). The functions g1 = ×(∅, ·, ·) and g2, ..., g4 =
+(∅, ·, ·) are addition ane multiplication. They have the empty parameter vector as the
first variable. The functions g5, ..., g7 = h(bi, ·), i = 1, ..., 3 are the gaussian function; and
g8 = l(b4, ·) is the linear function. The function h = λi√

2πσi
exp

(
− (x−ξi)

2

2σ2
i

)
have the parameters

vector bi = 〈λi, µi, σi, ai〉, and the function l = (ax + b) has the parameter vector b4 = 〈a, b〉.
Model 1 2 3
Error ρ1 0.0034 0.0037 0.0035
Error ρ2 0.0421 0.0325 0.00338
Num. of parameters 16 16 16
Description

x
h

x
h

x
h

+
x
h

+
+

x
h

x
h

+
x
h

+ x
+

x
l
÷

×

x
h x

c
÷

x
h

+ x
×

x
h

+

Legend: h — gaussian, c — cubic, l — linear,
+ — plus, × — times,÷ — divide

T a b l e 2. Description of the selected models

The model f2 could be represented as f(w,x) = l(b4, x)−1×(
x +

∑3
i=1 h(bi, x)

)
, where x =

x и w = b1
...b2

...b3
...b4. The full representation of the model is

y = (ax + b)−1

(
x +

3∑
i=1

λi√
2πσi

exp
(
−(x− ξi)

2

2σ2
i

)
+ ai

)
.

The model f2 was used by experts for their applications: forecasting and analysis of the oxygen
concentration at the exhaust manifold of the diesel engine.

Conclusions
The universal regression models (for example the neural networks or the radial basis functions)
often have a big number of parameters and turn out overtrained. To construct simple and precise
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models the problem of the search of a parametric regression model in an inductive-generated
set was posed.

To choose a model of the optimal complexity from the set of the competitive models the
two-level Bayesian inference was used. Since the inference integrals are very complex to be
computed the approximation procedures were developed.

The algorithm for model generation and selection was suggested. It uses the hyperparameters
which correspond the elements of the models. These hyperparameters show the importance of
the elements. The algorithm iteratively creates successor models. The models are modified
according to the importance criterion and selected according to the target function. The
complexity of the models are restricted automatically during the model comparison.

The algorithm was tested on the problem of the pressure curve approximation. The pressure
was measures in the combusting camera of the diesel engine. The obtained optimal model is up
to the industry standards.
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