
Quadratic Programming Feature Selection for Multicorrelated
Signal Decoding with Partial Least Squares

R.V. Isachenko1,∗, V.V. Strijov1

Abstract

This paper investigates dimensionality reduction problem for signal decoding. Its main
application is brain-computer interface modelling. The challenge is high redundancy in
the data description. Data combines time series of two origins: design space: brain cortex
signals and target space: limb motion signals. High correlations among measurements
of complex signals lead to multiple correlations. This case studies correlations in both
input and target spaces that carry heterogeneous data. This paper proposes feature se-
lection algorithms to construct simple and stable forecasting model. It extends ideas of
the quadratic programming feature selection approach and selects non-correlated features
that are relevant to the target. The proposed methods take into account dependencies in
both design and target space and select features, which fit both spaces jointly. The com-
putational experiment was carried out using an electrocorticogram (ECoG) dataset. The
obtained models predict hand motions using signals of the brain cortex. The partial least
squares (PLS) regression model is used as the base model for dimensionality reduction.
The best result is obtained by PLS algorithm, that reduces space dimensionality using the
QPFS.

Keywords: partial least squares, quadratic programming feature selection, signal
decoding, electrocorticogram
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1. Introduction

The raw data in the fields of chemometrics (Katrutsa and Strijov, 2015; Karimi and Far-
rokhnia, 2014; Lin et al., 2016) and signal decoding (Motrenko and Strijov, 2018; Eliseyev
and Aksenova, 2014; Eliseyev et al., 2012) are high-dimensional and extremely redundant.
The models built on such data are unstable. The redundant data description requires
excessive computations, which lead to extended analysis time. To overcome this problem,

∗Corresponding author
Email addresses: roman.isachenko@phystech.edu (R.V. Isachenko), strijov@phystech.edu

(V.V. Strijov)

Preprint submitted to Elsevier June 28, 2022



dimensionality reduction (Chun and Keleş, 2010; Mehmood et al., 2020) and feature selec-
tion (Katrutsa and Strijov, 2015; Li et al., 2017) methods are used for high-dimensional
data modeling.

The partial least squares (PLS) regression is a widely used algorithm for dimensionality
reduction (Lauzon-Gauthier et al., 2018; Engel et al., 2017; Biancolillo et al., 2017; Hervás
et al., 2018). The PLS projects initial features into low-dimensional space and uses the
new feature description as model features. It maps the features and the targets onto joint
latent space and maximizes the covariances between the projected vectors. It retrieves the
information about the initial input and target matrices and extracts their relations. The
following diagram shows the main principles of forecasting for the case, where both the
source X and the target Y lie in spaces that have hidden dependencies, which could be
reduced. The model projects input and target data into joint latent space and maximizes
covariances between the projections
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Parameters Θ of the linear model are set in order to obtain a better forecast subject to the
condition cov(U,T)→ max. The latent variables U,T approximate hidden dependencies
in joint space using linear models with parameters P,C.

An overview of the advances in the PLS regression is given in (Rosipal and Krämer,
2006; Rosipal, 2010). The dimensionality of latent space is much less than the size of the
raw data description. The selected features makes the linear model more stable. In this
case, we obtain the linear model with a small latent space dimensionality. However, the
final model uses the whole range of the raw features, and it does not allow to remove useless
features.

To obtain a sparse and stable forecasting model, we apply feature selection procedure.
The majority of feature selection methods ignores dependencies in target space. This study
suggests a novel approach to feature selection. The proposed approach extends the ideas
of the quadratic programming feature selection (QPFS) (Rodriguez-Lujan et al., 2010)
algorithm. It selects the non-correlated features that are relevant to the targets. The
proposed methods take into account the dependencies in target space and select features,
which are jointly informative to all targets.

Feature selection is a special type of dimensionality reduction where the latent repre-
sentation is a subset of the initial data description. Here, a subset of features defines a
forecasting model. The QPFS maximizes the feature relevances and minimizes the pairwise
feature redundancy. This approach was proposed and investigated in (Ding and Peng, 2005;
Yamada et al., 2014). It solves the optimization problem to select an optimal feature set.
The paper (Katrutsa and Strijov, 2017) shows that the QPFS algorithm outperforms many
existing feature selection methods for the univariate regression problem. The admissible
feature set is denoted in (1) by the vector z. Each selected feature is indicated by one ele-
ment of this vector, which makes 2n-1 admissible combinations of features. The solution z
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of the quadratic form (1) is delivered by a convex optimization algorithm with relaxation of
the integer variable, here z ∈ Rn. The algorithm solves the following optimization problem:

(1− α) · zTQz︸ ︷︷ ︸
Sim(X)

−α · bTz︸︷︷︸
Rel(X,Y)

→ min
z≥0n

1T
nz=1

. (1)

The QPFS algorithm introduces two functions: Sim and Rel. Sim estimates the redundancy
between features, and Rel renders the relevances between each feature and the target vector.
The QPFS minimizes the Sim function and maximizes the Rel function simultaneously. The
columns of matrix X are the features, and Y is the target. The entries of matrix Q ∈ Rn×n

measure the pairwise similarities between features. The vector b ∈ Rn expresses the
similarities between each feature and the target vector. The normalized vector z ∈ Rn

shows the importance of each feature. Function (1) penalizes the dependent features using
the Sim function and promotes the features that are relevant to the target using the Rel
function. The parameter α controls the trade-off between Sim and Rel. To measure the
similarity, the authors of (Rodriguez-Lujan et al., 2010) used the absolute value of the
sample correlation coefficient between pairs of features for the Sim function, and between
the features and the target vector for the Rel function. The detailed explanation of this
optimization problem is given in next section.

Paper (Motrenko and Strijov, 2018) proposes a multi-way version of the QPFS algo-
rithm for ECoG-based tensor data. It was shown that QPFS is an appropriate feature
selection method for the signal decoding problem. This paper investigates the multivariate
problem, where the dependent variable is a vector. It leads to correlations in the targets. In
this case, feature selection algorithms do not take into account these dependencies. Hence,
the selected feature subset is not optimal regarding its prediction.

We propose methods that take into account the dependencies in both input and target
spaces. It allows to form a stable sparse model. We refer to the original QPFS algorithm
as our baseline for the computational experiment. The convergence of the quadratic pro-
gramming algorithms were shown theoretically in (Isachenko and Strijov, 2018). The class
of convex algorithms was investigated by (Nesterov, 1983) and (Blaschke, 1996).

The main drawback of the QPFS algorithm is its computational costs. However, the
original paper (Rodriguez-Lujan et al., 2010) suggests a way to solve the quadratic prob-
lem (1) efficiently. Additionally, in (Prasad et al., 2013) the proposed sequential minimal
optimization framework solves the problem (1). There are alternative ways for solving
such optimization problems (Preitl et al., 2006; Chiang et al., 2014; Li et al., 2020; Precup
et al., 2021). Our choice of the QPFS formulation is based on the applicability of this
approach to the ECOG data (Motrenko and Strijov, 2018), its success on the feature se-
lection task (Katrutsa and Strijov, 2017), and the interpretability of the solution in terms
of linear multicorrelation.

The experiments were carried out using the ECoG dataset (Shimoda et al., 2012).
We compared the proposed methods for multivariate feature selection with the baseline
strategy and the PLS algorithm (Isachenko et al., 2018). The stability of the proposed
methods was investigated by measuring how the feature selection solution changes with
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data bootstrapping. Given the same number of features the proposed algorithms outper-
form the baseline algorithm. The combination of the feature selection procedure and the
PLS algorithm gives the best performance.

The main contributions of this paper are:

1. Addressing the dimensionality reduction problem for high-dimensional input and
target data;

2. Proposing new feature selection methods for multivariate regression with the analysis
of input and target spaces structures;

3. Comparing the proposed methods using a real ECoG dataset, and showing that the
proposed methods give better feature subsets than the baseline method.

2. Multivariate regression problem

The goal is to forecast a dependent variable y ∈ Rr with r targets from an independent
input object x ∈ Rn with n features. We assume that there is a linear dependence between
the object x and the target variable y as

y = Θx + ε, (2)

where Θ ∈ Rr×n is the matrix of the model parameters, and ε ∈ Rr is a residual vector. One
has to find the matrix of the model parameters Θ given a dataset (X,Y), where X ∈ Rm×n

is a design matrix and Y ∈ Rm×r is a target matrix:

X = [x1, . . . ,xm]T = [χ1, . . . ,χn]; Y = [y1, . . . ,ym]T = [ν1, . . . ,νr].

The columns χj of X correspond to the object features, and the columns νj of Y correspond
to the targets.

The optimal parameters are determined by the minimization of an error function. We
define the quadratic loss function as follows:

L(Θ|X,Y) =

∥∥∥∥ Y
m×r
− X

m×n
· Θ
r×n

T

∥∥∥∥2
2

→ min
Θ

. (3)

The solution of (3) is given by

Θ = YTX(XTX)−1.

The linear dependent columns of X lead to an unstable solution for the optimization
problem (3). If there is a vector α 6= 0n such that Xα = 0m, then adding α to any
column of Θ does not change the value of the loss function L(Θ|X,Y). In this case, the
matrix XTX is close to singular and is not invertible. To avoid strong linear dependence,
dimensionality reduction and feature selection are used.
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3. Feature selection problem

The feature selection goal is to find the boolean vector a = {0, 1}n in which the com-
ponents indicate whether the feature is selected. To obtain the optimal vector a among all
possible 2n − 1 options, we introduce the feature selection error function S(a|X,Y). We
state the feature selection problem as follows:

a = arg min
a′∈{0,1}n

S(a′|X,Y). (4)

The goal of feature selection is to construct the appropriate function S(a|X,Y). The
particular examples for the considered feature selection algorithms are given below and
summarized in Table 1.

Problem (4) is hard to solve due to the discrete binary domain {0, 1}n. We relax
problem (4) to the continuous domain [0, 1]n. The relaxed feature selection problem is

z = arg min
z′∈[0,1]n

S(z′|X,Y). (5)

Here, the vector z entries are the normalized feature importances. First, we solve prob-
lem (5) to obtain the feature importances z. Then, the solution of (4) is recovered by
setting a threshold as follows:

a = [aj]
n
j=1, aj =

{
1, zj > τ ;

0, otherwise.

τ is a hyperparameter that is defined manually or chosen by cross-validation. The prob-
lem (5) is the main problem for feature selection task used in the paper.

Once the solution a of (4) is known, problem (3) becomes

L(Θa|Xa,Y) =
∥∥Y −XaΘ

T
a

∥∥2
2
→ min

Θa

,

where subscript a indicates the sub matrix with the columns in which the components of a
equal 1. Further in this section we derive the proposed feature selection methods.

3.1. Quadratic Programming Feature Selection
Paper (Katrutsa and Strijov, 2017) shows that the QPFS outperforms many existing

feature selection algorithms using different quality criteria. The QPFS algorithm selects
the non-correlated features that are relevant to the target vector ν for the linear regression
problem where r = 1 as follows:

‖ν −Xθ‖22 → min
θ∈Rn

.

The authors of the original QPFS paper (Rodriguez-Lujan et al., 2010) suggested the
following way to select α for (1) and make Sim(X) and Rel(X,ν) have the same impacts:

α =
Q

Q + b
, Q = mean(Q), b = mean(b).
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The QPFS parameters are defined as follows:

Q =
[
|corr(χi,χj)|

]n
i,j=1

, b = [|corr(χi,ν)|]ni=1 . (6)

Here corr(·, ·), is the absolute value of the sample Pearson correlation coefficient:

corr(χ,ν) =

∑m
i=1(χi − χ)(νi − ν)√∑m

i=1(χi − χ)2
∑m

i=1(νi − ν)2
.

Other ways to define Q and b are considered in (Katrutsa and Strijov, 2017).
Problem (1) is convex if the matrix Q is positive semidefinite. In general, this is not

always true. To satisfy this condition, the matrix Q spectrum is shifted and matrix Q is
replaced by Q− λminI, where λmin is the minimum eigenvalue of Q.

3.2. Multivariate QPFS
Here, we propose the algorithms for feature selection in the multivariate case. If target

space is multidimensional, it is prone to redundancy and correlations between the targets.
In this section, we propose the algorithms that take into account the dependencies in both
input and target spaces.

Relevance aggregation (RelAgg). In (Motrenko and Strijov, 2018), in order to apply the
QPFS algorithm to the multivariate case (r > 1), feature relevances are aggregated through
all r components. The term Sim(X) is still the same, and matrix Q is defined by (6). The
vector b is aggregated across all targets and is defined as

b =

[
r∑

k=1

|corr(χi,νk)|
]n
i=1

.

The drawback of this approach is its insensitivity to the dependencies in the columns of Y.
Observe the following example:

X = [χ1,χ2,χ3], Y = [ν1,ν1, . . . ,ν1︸ ︷︷ ︸
r−1

,ν2].

We have 3 features and r targets, where the first r − 1 targets are identical. The pairwise
features similarities are given by matrix Q. Matrix B entries five the pairwise features
relevances to the targets. Vector b is obtained by the summation of matrix B over the
columns

Q =

1 0 0
0 1 0.8
0 0.8 1

 , B =

0.4 . . . 0.4 0
0.5 . . . 0.5 0.8
0.8 . . . 0.8 0.1

 , b =

 (r − 1) · 0.4 + 0
(r − 1) · 0.5 + 0.8
(r − 1) · 0.8 + 0.1

 . (7)

We would like to select only two features. For such a configuration, the best feature subset
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is [χ1,χ2]. Feature χ2 predicts the second target ν2 and feature combination χ1,χ2

predicts the first component. The QPFS algorithm for r = 2 gives the solution z =
[0.37, 0.61, 0.02]. It coincides with our knowledge. However, if we add the collinear columns
to matrix Y and increase r to 5, the QPFS solution will be z = [0.40, 0.17, 0.43]. Here, we
lose the relevant feature χ2 and select the redundant feature χ3. The following subsections
propose extensions to the QPFS algorithm that overcome this example challenge.

Symmetric importances (SymImp). To take into account the dependencies in the columns
of matrix Y, we extend the QPFS function (1) to the multivariate case. We add the
term Sim(Y) and modify the term Rel(X,Y) as follows:

α1 · zT
xQxzx︸ ︷︷ ︸
Sim(X)

−α2 · zT
xBzy︸ ︷︷ ︸

Rel(X,Y)

+α3 · zT
yQyzy︸ ︷︷ ︸
Sim(Y)

→ min
zx≥0n,1T

nzx=1

zy≥0r,1T
r zy=1

. (8)

We determine the entries of matrices Qx ∈ Rn×n, Qy ∈ Rr×r, and B ∈ Rn×r in the following
way:

Qx =
[
|corr(χi,χj)|

]n
i,j=1

, Qy = [|corr(νi,νj)|]ri,j=1 , B = [|corr(χi,νj)|]i=1,...,n
j=1,...,r

.

Vector zx shows the features’ importances, while zy is a vector of the targets importances.
The correlated targets will be penalized by Sim(Y) and have lower importances.

The coefficients α1, α2, and α3 control the influence of each term on function (8) and
satisfy the following conditions:

α1 + α2 + α3 = 1, αi ≥ 0, i = 1, 2, 3.

Proposition 1. The balance between the terms Sim(X), Rel(X,Y), and Sim(Y) for the
problem (8) is achieved by the following coefficients:

α1 ∝ QyB; α2 ∝ QxQy; α3 ∝ QxB. (9)

Proof. The desired values of α1, α2, and α3 are given by solving of the following equations:

α1 + α2 + α3 = 1;

α1Qx = α2B = α3Qy.

Here, the mean values Qx, B, and Qy of the corresponding matrices Qx, B, and Qy are
the mean values of the terms Sim(X), Rel(X,Y), and Sim(Y).

To investigate the impact of Sim(Y) on function (8), we balance the terms Sim(X)
and Rel(X,Y) by fixing the proportion between α1 and α2:

α1 =
(1− α3)B

Qx + B
; α2 =

(1− α3)Qx

Qx + B
; α3 ∈ [0, 1]. (10)
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Figure 1: Feature importances zx and zy with respect to α3 for the considered example

We apply the proposed algorithm to the discussed example (7). The given matrix Q
corresponds to matrix Qx. We additionally define matrix Qy by setting corr(ν1,ν2) = 0.2
and all others entries to one. Figure 1 shows the importances of features zx and targets zy
with respect to α3. If α3 is small, the impacts of all targets are almost identical and
feature χ3 dominates feature χ2. When α3 becomes larger than 0.2, the importance zy,5
of target ν5 increases along with the importance of feature χ2.

Minimax QPFS (MinMax). Function (8) is symmetric with respect to zx and zy. It penal-
izes the features that are correlated and irrelevant to the targets. In addition, it penalizes
the targets that are correlated and are not sufficiently explained by the features. It leads
to small importances for the targets that are weakly correlated with the features and large
importances for the targets that are strongly correlated with the features. This result con-
tradicts the intuition. Our goal is to predict all targets, especially those that are difficult
to explain, using the selected relevant and non-correlated features. We express this as two
related problems:

α1 · zT
xQxzx︸ ︷︷ ︸
Sim(X)

−α2 · zT
xBzy︸ ︷︷ ︸

Rel(X,Y)

→ min
zx≥0n,
1T
nzx=1

; (11)

α3 · zT
yQyzy︸ ︷︷ ︸
Sim(Y)

+α2 · zT
xBzy︸ ︷︷ ︸

Rel(X,Y)

→ min
zy≥0r,

1T
r zy=1

. (12)

The difference between (11) and (12) is the sign of Rel. In input space, the non-relevant
components should have smaller importances. Meanwhile, the targets that are not relevant
to the features should have larger importances. Problems (11) and (12) are merged into
the joint min-max or max-min formulation

min
zx≥0n

1T
nzx=1

max
zy≥0r

1T
r zy=1

f(zx, zy),

or max
zy≥0r

1T
r zy=1

min
zx≥0n

1T
nzx=1

f(zx, zy)

 , (13)
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where
f(zx, zy) = α1 · zT

xQxzx︸ ︷︷ ︸
Sim(X)

−α2 · zT
xBzy︸ ︷︷ ︸

Rel(X,Y)

−α3 · zT
yQyzy︸ ︷︷ ︸
Sim(Y)

.

Theorem 1. For positive definite matrices Qx and Qy, the max-min and min-max prob-
lems (13) have the same optimal value.

Proof. We denote the following:

Cn = {z : z ≥ 0n, 1T
nz = 1}, Cr = {z : z ≥ 0r, 1T

r z = 1}.

The sets Cn and Cr are compact and convex. The function f : Cn×Cr → R is a continuous
function. If Qx and Qy are positive definite matrices, function f is convex-concave. I.e.,
f(·, zy) : Cn → R is convex for a fixed zy, and f(zx, ·) : Cr → R is concave for a fixed zx.
In this case, Neumann’s minimax theorem states that

min
zx∈Cn

max
zy∈Cr

f(zx, zy) = max
zy∈Cr

min
zx∈Cn

f(zx, zy).

To solve the min-max problem (13), we fix some zx ∈ Cn. For a fixed vector zx, we
solve the problem

max
zy∈Cr

f(zx, zy) = max
zy≥0r

1T
r zy=1

[
α1 · zT

xQxzx − α2 · zT
xBzy − α3 · zT

yQyzy
]
. (14)

The Lagrangian for this problem is

L(zx, zy, λ,µ) = α1 · zT
xQxzx − α2 · zT

xBzy − α3 · zT
yQyzy + λ · (1T

r zy − 1) + µTzy.

Here, the Lagrange multipliers µ that correspond to the inequality constraints zy ≥ 0r are
restricted to being non-negative. The dual problem is

min
λ,µ≥0r

g(zx, λ,µ) = min
λ,µ≥0r

[
max
zy∈Rr

L(zx, zy, λ,µ)

]
. (15)

The strong duality holds for quadratic problem (14) with the positive definite matrices Qx

and Qy. Therefore, the optimal value for (14) equals the optimal value for (15). It allows
us to solve the problem

min
zx∈Cn, λ,µ≥0r

g(zy, λ,µ) (16)

instead of (13).
By setting the gradient of the Langrangian ∇zyL(zx, zy, λ,µ) equal to zero, we obtain

an optimal value for zy:

zy =
1

2α3

Q−1y
(
−α2 ·BTzx + λ · 1r + µ

)
. (17)
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The dual function is equal to

g(zx, λ,µ) = max
zy∈Rr

L(zx, zy, λ,µ) = zT
x

(
− α2

2

4α3

·BQ−1y BT − α1 ·Qx

)
zx

− 1

4α3

λ2 · 1T
r Q−1y 1r −

1

4α3

· µTQ−1y µ+
α2

2α3

λ · 1T
r Q−1y BTzx

− 1

2α3

λ · 1T
r Q−1y µ+

α2

2α3

· µTQ−1y BTzx + λ. (18)

It represents the quadratic problem (16) with n+ r + 1 variables.

Asymmetric Importance (AsymImp). The natural way to overcome the problem of the
SymImp strategy is to add penalties for targets that are correlated with features. We add
the term bTzy to the term Rel(X,Y) as follows:

α1 · zT
xQxzx︸ ︷︷ ︸
Sim(X)

−α2 ·
(
zT
xBzy − bTzy

)︸ ︷︷ ︸
Rel(X,Y)

+α3 · zT
yQyzy︸ ︷︷ ︸
Sim(Y)

→ min
zx≥0n,1T

nzx=1

zy≥0r,1T
r zy=1

. (19)

Proposition 2. Let vector b equal

bj = max
i=1,...n

[B]i,j.

Then, the importance coefficients for vector zy will be non-negative in Rel(X,Y) for prob-
lem (19).

Proof. The proposition follows from the fact that
n∑
i=1

zibij ≤
(

n∑
i=1

zi

)
max
i=1,...n

bij = max
i=1,...n

bij,

where zi ≥ 0 and
∑n

i=1 zi = 1.

Hence, function (19) encourages the features that are relevant to the targets and en-
courages the targets that are not sufficiently correlated with the features.

Proposition 3. The balance between the terms Sim(X), Rel(X,Y), and Rel(X,Y) for the
problem (19) is achieved by the following coefficients:

α1 ∝ Qy

(
b−B

)
; α2 ∝ QxQy; α3 ∝ QxB.

Proof. The desired values of α1, α2, and α3 are given by the solutions to the following
equations:

α1 + α2 + α3 = 1; (20)

α1Qx = α2B; (21)

α2

(
b−B

)
= α3Qy. (22)

Here, we balance Sim(X) with the first term of Rel(X,Y) using (21) and Sim(Y) with the
full Rel(X,Y) using (22).
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Table 1: Overview of the proposed multivariate QPFS algorithms

Algorithm Idea Error function S(z|X,Y)

RelAgg min
[
Sim(X)− Rel(X,Y)

]
min
zx

[
(1− α) · zTxQxzx − α · zTxB1r

]
SymImp

min
[
Sim(X)− Rel(X,Y)

+ Sim(Y)
] min

zx, zy

[
α1 · zTxQxzx − α2 · zTxBzy + α3 · zTyQyzy

]
MinMax

min
[
Sim(X)− Rel(X,Y)

]
max

[
Rel(X,Y) + Sim(Y)

] min
zx

max
zy

[
α1 · zTxQxzx − α2 · zTxBzy − α3 · zTyQyzy

]
AsymImp

min
[
Sim(X)− Rel(X,Y)

]
max

[
Rel(X,Y) + Sim(Y)

] min
zx,zy

[
α1 · zTxQxzx − α2 ·

(
zTxBzy − bTzy

)
+ α3 · zTyQyzy

]

Proposition 4. For the case of r = 1, the proposed functions (8), (13), and (19) coincide
with the original QPFS algorithm (1).

Proof. If r is equal to 1, then Qy = qy is a scalar, zy = 1, and B = b. It reduces
problems (8), (13), and (19) to

α1 · zT
xQxzx − α2 · zT

xb→ min
zx≥0n,1T

nzx=1
.

Setting α = α2

α1+α2
represents the original QPFS problem (1).

Table 1 shows the core ideas and error functions for each method and summarizes all
the proposed strategies for multivariate feature selection. RelAgg is the baseline strategy,
and it does not consider target space correlations. SymImp penalizes the pairwise tar-
get correlations. MinMax are more sensitive to the targets that are difficult to predict.
The AsymImp strategy adds the term to the SymImp function to make the features and
targets have asymmetric influences. All the proposed methods solve the quadratic pro-
gramming optimization tasks. The convergence of these type of problems carefully studied
in (Nesterov, 1983; Blaschke et al., 1997; Isachenko and Strijov, 2018).

3.3. Dimensionality reduction
To eliminate the linear dependence and reduce the dimensionality of input space, prin-

cipal components analysis (PCA) is a widely used algorithm. The main disadvantage of
the PCA method is that it is insensitive to the interrelation between the features and the
targets. The partial least squares algorithm projects the design matrix X and the target
matrix Y to latent space with low dimensionality (l < n). The PLS algorithm finds latent
space matrices T,U ∈ Rm×l that best describe the original matrices X and Y.

The design matrix X and the target matrix Y are projected into latent space in the
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following way:

X
m×n

= T
m×l
·PT

l×n
+ F

m×n
=

l∑
k=1

tk
m×1
· pT

k
1×n

+ F
m×n

, (23)

Y
m×r

= U
m×l
·CT

l×r
+ E

m×r
=

l∑
k=1

uk
m×1
· cT

k
1×r

+ E
m×r

, (24)

where T and U are the scores matrices in latent space, P and C are the loading matrices, E
and F are residual matrices. The PLS maximizes the linear relation between the columns
of matrices T and U as

U ≈ TB, B = diag(βk), βk = uT
k tk/(t

T
k tk).

We use the PLS algorithm as the dimensionality reduction algorithm in this research.
To obtain the model prediction and find the model parameters, we multiply both sides

of (23) by W. Since the residual matrix E rows are orthogonal to the columns of W, we
have

XW = TPTW.

The linear transformation between objects in input and latent spaces is the following

T = XW∗, where W∗ = W(PTW)−1. (25)

The matrix of the model parameters (2) could be found from equations (24) and (25) as

Y = UCT + E ≈ TBCT + E = XW∗BCT + E = XΘ + E. (26)

Thus, the model parameters (2) are equal to

Θ = W(PTW)−1BCT.

The final model (26) is a linear model that are low-dimensional in latent space. It
reduces the data redundancy and increases the model stability.

4. Experiment

To evaluate the selected feature subset, we introduce criteria that estimate the quality
of feature selection. We measure the multicorrelation using the mean value of multiple
correlation coefficient as follows:

R2 =
1

r
tr
(
RT
xyR

−1
xxRxy

)
; where Rxy = [corr(χi,νj)]i=1,...,n

j=1,...,r
, Rxx = [corr(χi,χj)]

n
i,j=1.

This coefficient lies between 0 and 1. A bigger R2 means that we have a better feature
subset.
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The model stability is given by the logarithmic ratio between the minimum eigen-
value λmin and maximum eigenvalue λmax of matrix XTX:

Stability = ln
λmin

λmax

.

A smaller Stability value indicates less multicollinearity in matrix X.
The scaled Root Mean Squared Error (sRMSE) shows the quality of the model predic-

tion. We estimate the sRMSE using train and test data.

sRMSE(Y, Ŷa) =

√
MSE(Y, Ŷa)

MSE(Y,Y)
=
‖Y − Ŷa‖2
‖Y −Y‖2

.

Here, Ŷa = XaΘ
T
a is the model prediction and Y is the constant prediction obtained by

averaging the targets across all objects. The error on the test set should be as small as
possible.

The Bayesian Information Criteria (BIC) incorporates a trade-off between the predic-
tion quality and the size of selected subset ‖a‖0 = #{j : aj 6= 0} =

∑n
j=1 aj:

BIC = m ln
(
MSE(Y, Ŷa)

)
+ ‖a‖0 · lnm,

A smaller value of BIC means a better feature subset.
All convex quadratic optimization problems had been solved using CVXPY open-source

Python library (Diamond and Boyd, 2016; Agrawal et al., 2018). The source code for the
paper could be found here 1.

4.1. Data
We conducted a computational experiment with the ECoG data from the NeuroTycho

project (Shimoda et al., 2012; Motrenko and Strijov, 2018). This data and the problem
of Brain-Computer Interface construction itself demanded the proposed theory due to the
high multicorrelation and redundancy of the features. The paper (Motrenko and Strijov,
2018) shows experimentally three types of multicorrelated data. First, the ECoG signals
are cross-correlated due the short distance between the cortical electrodes. Second, the
limb movement sequence is interdependent due its physical nature. And third, there is
the multiple correlation between the brain and limb signals, which established is the main
reason to construct the BCI forecasting models.

The ECoG data consist of brain voltage signals recorded over 32 channels. The goal
is to predict 3D hand positions in subsequent moments given the input signal. The initial
voltage signals are transformed to the spatial-temporal representation using the wavelet
transformation with the Morlet mother wavelet. The procedure of extracting the feature
representation from the raw data is described in detail in (Chao et al., 2010; Eliseyev and

1https://github.com/Intelligent-Systems-Phystech/MultivariateQPFS
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Figure 2: Brain signals (left plot) and 3D hand coordinates (right plot)

Aksenova, 2016). We unfold the data and feature description at each time moment has
dimension of size 32 (channels)× 27 (frequencies) = 864. Each object is the representation
of the local historical time segment with duration ∆t = 1s. The time step between objects
is δt = 0.05s. The final matrices are X ∈ R18900×864 and Y ∈ R18900×3k, where k is the
number of timestamps that we predict. We split our data into train and test parts with
the ratio 0.67. Example of the initial brain signals and the corresponding hand trajectory
is shown in Figure 2.

4.2. Results
Figure 3 shows the dependencies in the matrices X and Y for the ECoG data. The

frequencies in the matrix X are highly correlated. In the target matrix Y, the correlations
between axes are not significant in comparison with the correlations between consequent
moments and these correlations decay with time.
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Figure 3: Correlation matrices for X and Y

We apply the QPFS algorithm with the SymImp strategy for different values of α3

according to formula (10). The dependencies between target importances zy with respect
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to α3 for different values of k are shown in Figure 4. The targets importances are almost the
same for the predicted wrist coordinates with only one timestamp k = 1, which reflects the
independence between the x, y, and z coordinates. For k = 2 and k = 3, the importances of
some targets become zero when α3 increases. The vertical lines correspond to the optimal
value of α3 obtained by (9). The target importances zy for this value of α3 are similar.
Thus, the algorithm does not distinguish the targets for k = 1, 2, 3.
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Figure 4: Target importances zy with respect to α3 for QPFS with Symmetric Importance

We compare the proposed strategies of the multivariate QPFS that are given in Table 1
for the ECoG dataset. First, we apply all the methods to obtain the feature importances.
Then, we fit a linear model with an increasing number of features. For each method, the
features are sorted by their obtained importances. We show how the described quality
criteria change with the increasing feature set size. Figure 5 illustrates the results for the
prediction of k = 30 timestamps. Here, the feature importance threshold τ is represented
by colored ticks. These thresholds are larger for the proposed methods in comparison to
the baseline RelAgg strategy. The SymImp strategy has the largest threshold, and it does
not allow one to obtain a small feature subset. However, this strategy shows the best
performance in terms of the sRMSE using the test data. The second performance is given
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by AsymImp. All proposed algorithms give smaller test errors compared to the RelAgg
strategy. The Stability criteria is also increased for the proposed algorithms. Here, we
consider the AsymImp strategy as the best in terms of the predictive quality and the size
of selected feature subset.
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Figure 5: Feature selection algorithms evaluation for the ECoG data and the prediction of k = 30 times-
tamps

To compare the structure of the selected feature subsets and investigate the stability
of the selection procedure, we use the bootstrap approach. First, the bootstrap data
are generated. Then, we solve the feature selection problem for each pair of the design
and target matrices. The obtained feature importances are compared. We calculate the
average pairwise Spearman correlation coefficient and the `2 distance as the measures of
the algorithms stability. Table 2 shows the average error, the size of the subset and the
described statistics for each method. The error was calculated by fitting the linear model
using the 50 features with the largest importances. AsymImp gives the least error on the
test data. The size of the selected feature subsets is overestimated using the threshold τ =
10−4. The value of τ could be cross-validated to get the optimal threshold and feature
subset size.

We fit the PLS regression model to the data to compare the dimensionality reduction
and feature selection. Figure 6 demonstrates the scaled RMSE on the train and test data
with respect to the dimensionality of latent space l. The test error reaches its minimum
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Table 2: The stability of the selected feature subset

sRMSE ‖a‖0 Spearman ρ `2 dist
RelAgg 0.965 ± 0.002 26.8 ± 3.8 0.915 ± 0.016 0.145 ± 0.018
SymImp 0.961 ± 0.001 224.4 ± 9.0 0.910 ± 0.017 0.025 ± 0.002
MinMax 0.961 ± 0.002 101.0 ± 2.1 0.932 ± 0.009 0.059 ± 0.004
AsymImp 0.955 ± 0.001 85.8 ± 10.2 0.926 ± 0.011 0.078 ± 0.007

at l = 11. The PLS regression is a more flexible approach compared to the linear model
built on the subset of features. It results in the smallest error, but the model is not sparse.

Figure 7 compares 3 models: the linear regression and the PLS regression built on 100
features given the QPFS and the PLS regression with all features. We do not include the
linear regression with all features because its results are close to the constant prediction.
It also provides the result for the Lasso and Elastic Net algorithms that are widely used
for feature selection. We use the AsymImp strategy for the QPFS in this experiment.
The number of PLS latent dimension is l = 15. Here, the PLS regression is significantly
better than the linear regression with the QPFS features. It means that the latter model
is not flexible enough. However, the best result is by the PLS regression model combined
with the QPFS features. This model is sparse since it uses only 100 QPFS features. The
ability of the PLS model to find the optimal latent data representation improves the model
performance.
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5. Conclusion

The study investigates the problem of signal decoding in which the data are highly re-
dundant. To build a stable, adequate model, we reduced the dimensionality of the problem
using the dependencies in both input and target spaces. The PLS regression is considered
as a linear model for dimensionality reduction. The quadratic programming approach is
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investigated as a feature selection algorithm. The algorithm solves feature selection in
a single quadratic programming optimization problem. The multivariate extensions for
the QPFS algorithms are proposed. The resulting feature subset includes non-correlated
features that are relevant to most difficult targets.

The computational experiments were carried out using the ECoG data. The resulting
model predicts the limb position of an exoskeleton using brain signals. The proposed algo-
rithms outperform the baseline algorithm and reduce the problem dimension significantly.
The combination of feature selection for sparsifying the model and the dimensionality
reduction for increasing the model stability give the best result.
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