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Selection of superposition of models for railway freight forecasting∗

Our aim is to construct an optimal superposition of models for the short-term railway

traffic forecasting. The historical data constitutes daily railway traffic volume between pairs

of stations for different cargo types. The given time series are highly volatile, noisy, and non-

stationary. We propose a system that finds an optimal superposition of forecasting models with

respect to historical data features. Among the candidate models the system considers: moving

average model, exponential and kernel smoothing models, ARIMA model, Croston’s method

and LSTM neural networks.
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1. Introduction. The Russian Railways are highly important for the Russian economy.
Railroad transportations rank second in cargo turnover, outclassed by pipeline transportations
only. Around 80% of Russian Railways profits are generated due to cargo transportation [1].
In order to compete with other modes of transport available for clients, the company needs to
optimize economical efficiency of the traffic. Therefore the transportation volume forecasting
problem naturally arises in the business. The extensive development does not lead to the
desired economical outcome. Hence, intensive approach consisting of thorough optimization
of existing capacities with the use of modern data analysis is suggested to improve company
efficiency and increase profits.

Not all time series are subject to normal distribution of noise component [2]. A separate
model for residual forecast may improve the forecast quality for such series. In [3] the Markov
chain is used to forecast residuals; the resulting accuracy of the wind farm electricity output
forecast is improved by 10%. In the tourism industry the Fourier spectre correction is common
approach [4].

The aim of our work is to construct a model capable of forecasting time series with
asymmetric noise distribution. We consider superposition models, which are described in [5].
Two models are used in the superposition: one of them predicts the main, usually smooth,
component of a time series, whereas the other corrects the forecast in order to minimize error
introduced by the noise present in the series. Errors of the first model constitute training
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data for the second model. Whenever more than one forecast point is requested, either the
forecast of the first model or the corrected superposition, forecast can be used to calculate
the errors. In the computation experiment we compare the obtained forecast quality with
the quality of base algorithms. We also investigate the forecast quality dependency on the
magnitude of noise distribution asymmetry.

We use the following base algorithms as superposition components in the experiment:
the autoregressive moving average model, ARIMA [6], the singular spectrum analysis model,
SSA [7], the LSTM neural network model [8]. Among the less complex algorithms we
consider the exponential [9] and kernel [10] smoothing models. An optimal combination
of the mentioned algorithms varies depending on the time series. We consider all possible
pair variants and build the superposition forecast quality matrix to find the optimal pair.

The historical data in our research is the Russian Railways transportation journal. The
data includes the following information: shipment date, departure and destination stations,
number of wagons, cargo type code, wagons type, total weight, and routing sign. The series
are highly volatile, non-uniform, and noisy; some of them are non-stationary. Additionally,
there are stations pairs with infrequent transportations that produce series with a lot of zero
values. We use the Dickey–Fuller procedure to test whether the series is stationary.

The daily railway load data is represented in [11] and contains information about shipment
date, station pair, cargo code, and volume. The length of the series is 1 year; the data
contains shipments history for 78 regions, 4000 stations and 43 cargo types such as oil, ore,
peat, automobiles, cotton, sugar and grain.

We also test our approach on the airline passenger data [12], German electricity prices
[13], and a synthetic series generated as a sine wave with additive noise sampled from the
Wald distribution.

2. Optimal superposition construction problem.

A parametric function f ◦ g, which evaluates an unknown time series value x̂t+1 at the
time moment t + 1 given prior series observations x = [x1, ..., xt]

ᵀ is called the forecasting
model :

x̂t+1 = f ◦ g(ŵ, xt, xt−1, . . . , x1). (1)

The parameters ŵ are obtained by minimizing the error function.
Forecasting models are constructed from candidate models f, g ∈ F. The family F is

described in section 4. A forecast error (regression residual) is a difference εe = xt − x̂t

between the historical time series value and its forecast xt+1 = f ◦ g(xt, xt−1, . . . , x1) + εt+1.
We assume that residuals expectation is not zero, E(ε) 6= 0, and that their variance is
constant, D(ε) = σ2.
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Function f forecasts trend and seasonal components of time series whereas g forecasts
residuals of f . The final forecast x̂t+1 accounts for both components. The idea is that g
increases the accuracy of the forecast given by f :

f : xt → x̂ft+1,

g : xft+1 → x̂f,gt+1.

The problem is to construct a forecast (1) at r points in the future, that is, to determine
[x̂t+1, . . . , x̂t+r]

T. The forecast request is the number of points at which the forecast must be
calculated.

The forecast horizon is the number of steps h, h ≤ r, after which the difference between
the forecast value x̂ and the historical value x is significant:

||x̂t+h−1 − xt+h−1|| ≤ µ, whereas ||x̂t+h − xt+h|| > µ. (2)

In order to obtain the model parameters ŵ we minimize the loss function S(w):

ŵ = argmin
w

t∑
τ=1

S(w, xτ − x̂τ ).

The forecast error S is estimated using MAPE (5).
3. Retrospective forecast by superposition. We consider two variants of a superposition

forecast algorithm and an ordinary sequential forecast algorithm. Both superposition forecast
algorithms aim to increase the accuracy by using an additional model to forecast the residuals.
Therefore, two functions are used to build the forecast: the first function builds the base
forecast and the second function corrects it by forecasting the errors of the first function.
The difference between the algorithms lies in the inputs to the first function. When building
forecasts for requests greater than 1, we can use outputs of the model as inputs for future
points. However, when building a superposition forecast we can also use the corrected
superposition value as input.

3.1. Parallel superposition forecast algorithm. The inputs are the time series x

and the functions f and g. The algorithm (3) consists of the following steps.

1. The function f is used to calculate n forecasts of the history end using the points
x̂ft , ..., x̂

f
t−n+1 as inputs.

2. n residuals ε̂t, ..., ε̂t−n+1 are calculated as differences

ε̂t−k = xt−k − x̂ft−k,

where t is the length of historical data.
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3. The function g is used to calculate the residual forecast ε̂t+i for h points ahead.

4. The final forecast is calculated as

x̂f,gt+i = x̂ft+i + ε̂t+i

using the sequential forecast x̂ft+i obtained from the function f .
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3.2. Accumulating superposition forecast algorithm. The inputs are time series
x and functions f and g. A forecast depth i is the number of time series elements that
participate in the forecast of a point. The algorithm (4) consists in the following steps.

1. The function f is used to calculate the retrospective forecast x̂f,(1)t+1 , ..., x̂
f,(i)
t+i ; the forecast

of the point t+ i is on the horizon i and depth i.

2. The function f is used to calculate r sets of the history end forecasts, x̂f,(i)t , ..., x̂
f,(i)
t−n+1,

each set is a forecast — on depth i, i = 1, ..., r.

3. r sets of residues ε̂(i)t , ..., ε̂
(i)
t−n+1 are calculated as

ε̂
(i)
t−k = xt−k − x̂f,(i)t−k , i = 1, ..., r.

4. The function g is used to forecast the residues ε̂(i)t+i; each forecast is one-point and is
based on the calculated series ε̂(i)t , ..., ε̂

(i)
t−n(g)+1.

5. The final forecast is calculated as

x̂f,gt+i = x̂
f,(i)
t+i + ε̂

(i)
t+i.
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3.3. Sequential forecast algorithm. The inputs are time t0 and time series x1÷t0 =

[x1, x2, · · · , xt0 ]. A forecast for request r is xt0+r, t0+r < T , where T is the length of historical
data. The algorithm consists of the following steps.

1. The function f is used to forecast the next series element x̂t+1.

2. The new element x̂t+1 and the whole series history now serves as an input to f in order
to obtain x̂t+2.

3. First two steps are repeated until the forecast for the request r is obtained.

3.4. Block forecast algorithm. To evaluate the quality of the forecasts on requests
larger than 1 we introduce the block forecast.

The time series is split into training part x1÷t0 and validation part xt0+1÷t1 . To estimate
the quality we build t1 − t0 forecasts, i-th forecast (0 ≤ i < t1 − t0) is built using values
x1÷t0+i as a one-point forecast.

A block length r is a maximal forecast request that does not exceed the forecast horizon
of the model used. The forecast to be compared with the validation part of the series is then
built as follows.

1. Using the training data x1÷t0 and the sequential forecast algorithm build an r-points
ahead forecast.

2. Now treat the first r values of the validation part as known. Use series x1÷t0+r to build
a new r-step ahead forecast.

3. Repeat step 2 until there are values in the validation part.

The resulting forecast contains equal high number of values obtained from the 1, 2, . . . , r-
step ahead forecasts. Therefore, its quality is an average quality of the algorithm on forecast
requests from 1 to r.
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4. Computational experiment. In our experiment we analyse the quality and stability
of the forecast with the use of superposition forecasting models under the condition of
asymmetric distribution of the residuals. We use the following time series: railroad transportation
series [14], electricity consumption series [15], electricity price series [13], airline passenger
series [12], and a sine wave with additive noise sampled from Wald distribution.

We investigate the forecasts built by the base models and according to their superpositions.
We provide visualizations of the forecasts and numerical values of the error. It is estimated
using MAPE (5) and MSE (6):

MAPE =
1

n

n∑
i=1

∣∣∣∣ εixi
∣∣∣∣ , (5)

MSE =
1

n

n∑
i=1

ε2i . (6)

In all experiments the quality of a block forecast (3.4) is used.
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Fig. 2: Empirical residual distribution density
for the best base model (LSTM)

For each time series (airline, synthetic, german, railroads) we provide:

1. A plot of series with a split into training and validation part visualized.

2. Plots of the base models forecasts with the optimal hyperparameters. All forecasts are
built using (3.4). The block length in all experiments is 10.

3. The forecast of the best superposition and separately of this superposition main model.

4. The superposition forecast quality matrix in logarithmic scale. Its rows correspond to
main forecasting models, its columns correspond to residual forecasting models. The
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first column corresponds to no residual forecast model and thus contains base algorithm
results. Cells with a border coresspond to the best forecast in a row.
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Fig. 3: Base models’ forecasts

5. Experimental results: railroads.

Figure 2 shows that the distribution of the best model residuals is close to normal.
Therefore, using a superposition does not improve the forecast quality.

6. Forecast horizon in the experiments. In order to determine the forecast horizon
(2) we plot the MAPE (5) and its sample deviation (represented on the figure through the
upper confidence bound) dependency on the forecast request in the experiments. The forecast
horizon is then determined graphically by the “broken cane rule” (fig. 4).

The forecast horizon is equal to 7, whereas the used block length is 10, which is slightly
greater.
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7. Experiment: dependency of the quality on the noise distribution asymmetry

magnitude.

The noise distribution is obtained from a one-parametric subset of the Wald distribution.
A single parameter l defines the distribution parameters as µ = 1+ l

30
, λ = l2

4
. The measure

of the distribution asymmetry is

S = |P (x > xm.p.)− P (x < xm.p.)| ,

where xm.p. is the most probable value of the random noise variable, corresponding to
the probability density maximum and the peak on fig. 5. Clearly S ∈ [0, 1

2
); a value of 0

corresponds to the distribution, which probability mass is symmetric relative to the peak,
e.g. normal distribution; values close to 1

2
correspond to highly skewed distributions. The

loss function used is an asymmetric piecewise-linear function

l(x) =

x, x > 0

−1
5
x, x < 0

.

8. Conclusion. We consider the problem of building a superposition model for time
series forecasting. We include exponential smoothing, kernel smoothing, Croston’s method,
SSA, ARIMA, quantile regression, and LSTM in the family of base algorithms. We build
the superposition forecast quality matrix, the residual distribution plot, and determine
the forecast horizon for several datasets: railroad transportation, airline passenger data,
electricity prices and synthetic data. The computational experiment results show that the
superposition model quality can be greater than base model quality when the noise distribution
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is asymmetric. Additionally we investigate the dependency of the error on the magnitude of
noise distribution asymmetry and show that the superposition becomes better as the noise
becomes more skewed. The experiment source code is available at [16].
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