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The workflow

Client's application & history

1
Client’s score: probability of fraud / default

I

Accept (refuse) the application

1

Make the agreement

!

Client's history
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Types of scorecards

e Application
e Behavioral
e Collection

Number of the records:
e ~ 10% for long-term credits,
e ~ 10° point-of-sale credits,
e ~ 107 for churn analysis.

Type of detection

Fraud: deliquency 90+ on 3rd

0— 30+ — 60+ — 90+ — 120+ — 150+

Default: deliquency 90+ on any, but 15t
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List of variables

Variable Type Categories
Loan currency Nominal 3
Applied amount Linear

Monthly payment Linear

Tetm of contract Linear

Region of the office Nominal 7
Day of week of scoring  Linear

Hour of scoring Linear

Age Linear

Gender Nominal 2
Marital status Nominal 4
Education Ordinal 5
Number of children Linear

Industrial sector Nominal 27
Salary Linear

Place of birth Nominal 94
Car number shown Nominal 2
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The data, general statistics

Loans of 90+ delinquency, default cases, applications
The fraud cases are rejected

Overall number of cases ~ 10%-10°

Default rate ~ 8-16%

Period of observing: no less 91 days after approval
Number of source variables ~ 30-50

Number records with missing data > 0, usually very small
Number of cases with outliers > 0, 30%-cutoff

Scorecard developing, regular way

Create the data set (the design matrix and the target vector)
Map ordinal and nominal-scaled features to the binary ones
Make the regression model

Test it (multi-collinearity, stability, pooling, etc., see Basel-II)

Determine the cut-off, according to the bank policy
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The problem statement, basic variant

There given
e the set D = {(x;,yi)},
X = [Xi1,..., Xj,...,xin) €R", y; € {0,1};
ieZT=A{1,...,m}, jeJ=A41,...,n}
e learning/control i € Z = L LI C;

e the error function S and the model f(w,x) = p(w"x),
where 1 is the link function.

Find
the subset A C 7, which brings

A" = argﬁné‘r}S(fA\w , Dc) (1)

while parameters w* bring

* = i Dy, f4). 2
w arg\;glvnvS(WI . fa) (2)
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The error function depends on the data generation hypothesis

The dependent variable y ~ Bernoulli(f)

y= [}/17---,Ym]T

and the model )

f=——
1+ exp(—Xw)

define the (error function) log likelihood function

—In P(D|w) = — Z (yilnw™x; 4+ (1 — y;)In(1 —w'x;)) = S(w).
iel
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Create the one-level model
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Use the ROC-curve as the quality criterion

AUC = 0.8140
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False positive rate, FPR

- | L] TPR = TP/P = TP/(TP + FN)
o iy FPR — FP/N = FP/(FP + TN)
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List of primitive functions

Description In Nin Out Nout Comm Param
Nominal to binary nom 1 bin 1-4 - Yes
Ordinal to binary ord 1 bin 1-4 - Yes
Linear to linear segments lin 1 lin 1-4 - Yes
Linear segments to binary lin 1 bin 1-4 - Yes
Get one column of n-matrix  bin 1-4  bin 1 - Yes
Conjunction bin 2-6  bin 1 Yes -
Dijsunction bin 2-6  bin 1 Yes -
Negate binary bin 1 bin 1 - -
Logarithm lin 1 lin 1 - -
Hyperbolic tangent sigmiod lin 1 lin 1 - -
Logistic sigmoid lin 1 lin 1 - -
Sum lin 2-3  lin 1 Yes -
Divfference lin 2 lin 1 No -
Multiplication lin,bin  2-3 lin 1 Yes -
Division lin 2 lin 1 No -
Inverse lin 1 lin 1 - -
Polynomial transformation lin 1 lin 1 - Yes
Radial basis function lin 1 lin 1 - Yes
Monomials: x4/x, etc. lin 1 lin 1 - -
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Feature generation

There given
e the measured features = = {¢},
e the expert-given primitive functions G = {g(b, &)},

g: & x;

e the generation rules: G O G, where the superposition
gk © g1 € G w.r.t. numbers and types of the input and output
arguments;

e the simplification rules: g, is not in G, if there exist a rule

rogy— 8 €4g.

The result is
the set of the features X = {x1,...,Xj,...,Xp}.

The number of features exceeds the number of clients!
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Examples of generated features

Frac(Period of residence, Undeclared income)

Frac(Seg(Period of employment), Term of contract)

And(Income confirmation, Bank account)

Times(Seg(Score hour), Frac(Seg(Period of employment),
Salary))
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Feature generation

@ Select random nodes in two features,

® exchange the corresponded subtrees,

© modify the function at a random node for another one from
the primitive set.

Any modification must result an admissible superposition.

Times Frac
Smo s smo o
&1 Mo;{émial 51 Invélise Mo.ﬁé)mial 51
552 Lc;>g f 3
&
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Structural parameters and model selection

Exhaustive search in the set of the generalized linear models
w(y) = wo + aawixy + aowaxa + ... + ARWRXR.
Here a € {0, 1} is the structural parameter.

Find a model defined by the set A C 7:

a1 Qo ... (¥k7
1 0 0
0 1 0
1 1 1
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Empirical distribution of model parameters

Let there given a sampled set {wy, ..., wg} realizations of the
random variable w and the error function S(w|D,f). Consider the
set {sx = exp(—S(wi|D,f))|k=1,...,K}.

100
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60

20 40 60 80 100
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Data generation hypothesis: the model parameters

Let w ~ A (wg, A71):
p(w|A, f) = (277)_gdet_%(A_1) exp (%(w —wp)TA(w — wo)> .

The posterior distribution of the model parameters, given A, B:

Dlw, B, f)p(w|A, f)

p(
D,A B, f) =
PWID-AB D = DA 8.7

Rewrite the error function S = E,, + Ep as...
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The error function now includes the second part

The distribution y ~ N(f, A1), LM

S(WID, £) = 5(w — wie) AW — we) + 5(F —y)B(F ).

The distribution y ~ B(f,1 — f), GLM

The likelihood function is p(D|w, B, f) = [;e7 £'(1 — £;)*7, and
the error function

S(w) = 30w W) AW — W) £ 3y i (1 i) n (1~ £).
i€

The covariance matrix B! is estimated using Newton-Raphson
method iteratively:

Wii1 = wi—(XTBX) I XT(F—y) = (XTBX) ' X" B(Xwx—B~(f-y)).
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There are nine possible variants for data generation hypothesis

The (inverse) covariance matrix of

parameters ‘ target variable
A=al, B = Bl
A =diag(ai,...,an) | B=diag(B1,...,0m)
A B

18 /51



Empirical distribution: approximation and hypothesis

Approximate the set {s,} with the function p(w|A) from N using
the following hypothesis on the covariance matrix A~1:
A=al, a>0; A = diag(as, .

CQp);

A, wTAw > 0.

0
ORS

%
S
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How the distribution of parameters depends on A = al,

0.5
0.4
o 03]
0.2

0.1

e z-axis: p(w|D, f, A, B) the distribution of parameters,
e y-axis: « the inverted covariance,

e x-axis: w the model parameter.
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Use Bayesian inference to find the most probable parameters

The most probable parameters

Wi = arg max p(w|D, f, A, B),

of the model f are estimated using the Bayesian approach

p(Dlw, f, B)p(w|f, A)

D,f,A B) = .
pwID.1. A B) = 1 Dlwi, 7. B)p(w!|F. A)dw

The likelihood function p(D|w, f, B) is defined by the hypothesis of
distribution of the dependent variable y.
The model evidence

SUMJ»:/MDMﬁBMMVAMW
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The problem of the most evident model selection

There given:
e the sample set D,
e the finite set of models F = {f|k € K}.

One must select the most evident model £+, such that

k* = f|D) = D|w, B, f, D, A, f, !
arg max p(7iD) = argmax [ p(Dlw. B. i)p(w|D. A, )
wew

If we assume the prior probabilities of models are equal,

p(f) = p(f2) = --- = p(fx),

then the most evident model selection problem is stated as the
most probable model selection problem.
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The problem of the most probable parameters estimation

There given:
e the sample set D, the model f = f(w,x),

e the data generation hypothesis, it defines the error function

S(w) = —In(p(D|w, B, f)p(w|A, f)).

One must estimate the most probable parameters wy;

Wyp = argmrlg% S(w, D, A, B, f).

One must estimate corresponding hyperparameters A, B

A B =arg rRig ¢(S(WMP, D, A B, f))
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What is the optimal feature set?
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Multicorrelation and Variance Inflation Factor

e Extract j-th column from the design matrix X,
e make regression X\ (1 ony = Xy,

e for the feature number j

1
VIFj = .
J

where the determination coefficient

R2_1_ [[%j — F(X1s -y X1, Xj41, - - -5 Xn) ||
’ %) — %[>

here X; is average vector for x;.
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Belsley method

Decompose
XTXV = VA?,

Find the conditional indexes

)\max

77_[: A N
J

Obtain the variances of the parameters w
Var(w) = 62(XTX) 1 = o?2(VT) A2V~ = 2VA2Y T,

where o2 is the variance of the residuals.
The variance of w; is j-th diagonal element of Var(w).
Match the conditional index 7); and corresponding coefficients g;

n w2
o %var(w;) = )\—g = (g1 + g2+ ...+ qin)-

j=1"J
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Belsley method, the decomposition of var(w;)

Conditional | var(wy) var(wp) ... var(w,)
index
m q11 g21 e gn1
2 d12 g22 . adn2
7]" qln q2n e qnn

e the bigger g;; the bigger impact of j-th parameter into the
variance of j-th parameter;

e the bigger values of 7; mean there is a dependency between
the features;

e the i-th feature in involved in the multicorrelation if 7; is larger
and gj; exceeds a given threshold.
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Model selection by the evidence maximization

450

lete
Add elete
440 -

4301 .

420 b

evidence

400 .

380 I I I I I I I I
0 5 10 15 20 25 30 35 40 45

Iteration number

Add and Delete features until the evidence goes down.
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Stepwise feature selection algorithm

Add stage:
Add the feature £(fy4, ), which brings minimum to the error function

" = in S(w|D, fa,_,u;
Jo=arg min (W[D, f4, ugy)

Ak = Ax—1 U {j*} until exceeds its minimum value on this stage
but no more than given Ag¢.

Del stage:

Delete the feature Ay = Ax_1\j* according to the Belsley method:

t

=> [z >, J* = arg max Z q

cA
g=1 I= k= lg t—i*+41

until £(fy4,) exceeds its minimum value on this stage but no more
than given Ag.
Repeat Add and Del stages until the evidence £(f4) become stable.
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Model selection by the error function minimization

10 20 30 40 50 60
Number of steps

Add and Delete features until the the error function up.
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Removing a feature during one stage

1200 1300
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3 ~
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g |
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Number of steps Number of steps
Condition number 7 —InS

The condition number 7 and the likelihood —In'S depends on the
number of the removed features.
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Test the multicorrelated data set

Features

The red color means the feature is included into the active set A.
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Comparison table of the feature selection algorithms

Algorithms Sr Se G gk k
Genetic 0.073 0.107 337 13 26
GMDH 0.146 0.194 745 6 10
Stepwise 0.128 0.154 644 7 12

Ridge 0.111 0.146 832 33 160
Lasso 0.121 0.147 611 5 18
Stage 0.071 0.096 324 9 26
FOS 0.106 0.135 527 7 20
LARS 0.098 0.095 492 7 28
Evidence 0.097 0.123 469 5 21
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Split the sets for multilevel models

5

The active variables, indexed by the set A C 7
are fixed to define the model (w4, x4).

S

Objects
>

The mixture model §
is the set of models h = {fk\k =1,...,K}, such that

= Tk fk(Wk), where =1 mm=1>0.
h= Z kfi(wi), Z K K > 2 3

The multilevel model f, defined by indexed

is the set of models f = {fx|k =1,..., K}, such that

N>

-

[$2]

~

(o8]

Objects

E(vies,|x) = f(wk, XjeB,)

N

—

on the split
—_ K 3
1= uklek =R 1 2 3
Models
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The model evidence and multilevel modeling

The evidence of the model

fics Xis Yi i | fie, xi) p(Fic, Xi
p(fk|xi’yi):p(k. y):p(y\ k .)P.(k )
p(xi,yi) p(xi, yi)

The evidence of two models

p(fi|xi,yi)  pyilfi,xi) p(f1)

p(f2lxi,yi)  plyilf,xi)p(f)

The decision rule: a sample corresponds to which model?

ki =arg ma | e, %)
, gke{L'}f’K}p(y’I ko Xi)
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Model detection
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Model detection

Safe strategy of model selection

k¥ =arg max  min p(u]f, x;).
! gke{l,...,K} u€{0,1}p( [ e xi)

Logistic regression case

* — i T —xT7
k; argke{r??.).(’K}{mln(a(x, wy), o(—x;wyg))}.

Transform the rule

k¥ =arg max —|xTwyl|) =
i gke{l,...,K}U( |/ k|)

ar min  o(|xTwy]).
gke{l,...,K} (% wil)
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The corollary of the rule

ki =ar min  o(|x’w
i gke{l,...,K} (|I k|)7

ki =arg min |x wy].
! ke{l,...,K}' Wi

The object corresponds to the nearest separation hyperplane about
accuracy up to |wgl.
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The EM-algorithm

M-step Estimate the model parameters wy for each
model fy, k = 1,..., K using Newton-Raphson method (IRLS).

E-step Detect a corresponding model using the decision rule (the
model evidence).

ki =arg  min |x]wgl.
! ke{l,...,K}' Wil
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model data

-2+

-3+ 4
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Convergency of iterations
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Convergency of iterations

Step 2
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Convergency of iterations

Step 3
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Convergency of iterations

Step 4
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Convergency of iterations

Step 5
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The sample set classification

—3F

-5 20
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Computational experiment: the synthetic data-1, AUC

0.9
0.8
0.7

05 —— _— b

True positive rate

0.4 4
0.3f q
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False positive rate
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Computational experiment: the synthetic data-2, AUC

True positive rate
o o o
IS o o

©
N

—SVM

—— Single logistic regression

— Mixture of 2 logistic models
Mixture of 3 logistic models
Mixture of 5 logistic models

—— Two multilevel models

0.2

04 06 08
False positive rate
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The model construction flow

Get data
Assign initial models

Assign primitive functions
Assign admissible superpositions

—» Tune models
Evaluate hyperparameters

\ Estimate quality of models

Select models
Modify superpositions

\ Use primitive functions

Generate new models
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Conclusion

The principle
e Hyperparameters are defined by the variance of model
parameters,
they could be used to select the stable and precise set of
features.

Outline
e The strategy «generate various — select the besty is appeared
to be successful for the credit scoring.
e One shall use primitive functions to generate non-linear
features...
. and evaluate hyperparameters to select the best features for
the generalized linear model.

51/51





