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The plan

1 Coherent Bayesian inference.

2 Evidence of models.

3 Model comparison.
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Use Bayesian inference to find the most probable parameters

The most probable parameters

wMP = arg max
w∈W

p(w|D, f ,A,B),

of the model f are estimated using the Bayesian approach

p(w|D, f ,A,B) =
p(D|w, f ,B)p(w|f ,A)

∫

p(D|w′, f ,B)p(w′|f ,A)dw′
.

The likelihood function p(D|w, f ,B) is defined by the hypothesis of
distribution of the dependent variable y.
The model evidence

E (f (w, x)) =

∫

p(D|w, f ,B)p(w|f ,A)dw.
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Classical problem statement for model selection

There given:

• the sample set D,

• the split of the sample index set I = L ⊔ T into the learning
and test subsets,

• the finite set of models F = {fk |k ∈ K},

• the error function S (defined by the data generation hypothesis

S = − ln
(

p(D |w,B, f )
)

, or by some practical considerations).

One must select a model fk∗ index k∗ such that

k∗ = argmin
k∈K

S(fk |ŵk ,DT ),

where the parameters ŵk estimated as either most probable or
most likely

ŵk = arg min
wk∈W

S(wk |fk ,DL).

Vadim Strijov Model complexity and comparison 4 / 29



The problem of the most evident model selection

There given:

• the sample set D,

• the finite set of models F = {fk |k ∈ K}.

One must select the most evident model fk∗ , such that

k∗ = argmax
k∈K

p(fk |D) = argmax
k∈K

∫

w∈W

p(D|w,B , fk)p(w|D,A, fk)dw.

If we assume the prior probabilities of models are equal,

p(f1) = p(f2) = · · · = p(fK ),

then the most evident model selection problem is stated as the
most probable model selection problem.
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The problem of the most probable parameters estimation

There given:

• the sample set D, the model f = f (w, x),

• the data generation hypothesis, it defines the error function

S(w) = − ln
(

p(D|w,B , f )p(w|A, f )
)

.

One must estimate the most probable parameters wMP

wMP = arg min
w∈W

S(w,D, Â, B̂, f ).

One must estimate corresponding hyperparameters A, B

Â, B̂ = argmin
A,B

Φ
(

S(wMP,D,A,B , f )
)

.
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How to estimate the hyperparameters?

Maximize the model evidence p(D|A, β) according to A and β

p(D|A, β) =

∫

p(D|w,A, β)p(w|A)dw → max .

Use the Laplace approximation,

p(D|A, β) =
1

Zw(A)

1

ZD(β)

∫

exp(−S(w))dw.

Substitute Zw(A), ZD(β) and S(w) and find the logarithm of it:

p(D|A, β) =
1

Zw(A)

1

ZD(β)
exp(−S(w0))(2π)

n
2 |H|−

1
2 .

ln p(D|A, β) = −
n

2
ln 2π −
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2
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Z
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2
ln 2π +

m
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Z
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n
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1
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︸ ︷︷ ︸
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How to estimate the hyperparameters?

Solve the optimization problems

∂

∂A
ln p(D|A, β) = 0 and

∂

∂β
ln p(D|A, β) = 0.

As the result of the evidence maximization we obtain

2αjE
′
w
= n − γj , where γj =

αj

λj + αj

and

2βE ′
D = m −

n
∑

j=1

γj .

Estimate the hyperparameters α and βi iteratively,

αnew
j =

n − γj
2E ′

w

, βnew =

m −
n
∑

j=1
γj

2E ′
D

.
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How the distribution of parameters depends on A = αIn
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• z-axis: p(w|D, f ,A,B) the distribution of parameters,

• y-axis: α the inverted covariance,

• x-axis: w the model parameter.
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Model selection by evidence maximization, a strategy

One must find the feature indexes A ⊆ J .

Step 0. As = ∅.

Step s. 1 Add the next feature A′ = A ∪ {j}, where j ∈ J \ A,
according to a predefined criterion (max correlation or
minVIF) until E (f (w′

A, x)) decreases.
2 Delete the most informative features A′ = A \ {j}, where

j ∈ A, according to the variances A = diag(α1, . . . α|A|) until
E (f (w′

A, x)) decreases.

• Iterate until convergency of E .
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Model selection by evidence maximization, an example
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Add and Delete features until the evidence goes down.
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Model selection by evidence maximization, an example
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Test on the multicorrelated data set
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The red color means the feature is included into the active set A.
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William of Ockham, 1288–1348 (University of Oxford, 1309–1321)

Ventia non sunt multiplicanda praeter necessitatem.

Occam’s razor: entities (model elements)
must not be multiplied beyond necessity.
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Coherent Bayesian Inference

Coherent Bayesian Inference is a method of the model comparison.
This method uses Bayesian inference two times:

1 to estimate the posterior probability of the model parameters
and

2 to estimate the posterior probability of the model itself.
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Bayesian Comparison, the second level

Consider a finite set of models f1, . . . , fM that fit the data D.
Denote prior probability of i -th model by p(fi). After the data have
come, the posterior probability of the model

p(fi |D) =
p(D|fi)p(fi )

∑M
j=1 p(D|fj)p(fj)

.

The probability p(D|fi) of data D, given model fi is called the
evidence of the model fi .
Since the denominator for all models from the set is the same,

p(D) =

n
∑

j=1

p(D|fj)p(fj),

then
p(fi |D)

p(fj |D)
=

p(fi)p(D|fi )

p(fj)p(D|fj)
.

Assume the prior probabilities to be equal, p(fi) = p(fj).
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A toy example of the evidence computation

Let there be given the series {−1, 3, 7, 11}. One must forecast the
next two elements.
The model fa:

xi+1 = xi + 4

gives the next elements 15, 19.
The model fc :

xi+1 = −
x3i
11

+
9x2i
11

+
23

11

gives the next elements −19.9, 1043.8.

Let the prior probabilities be equal or comparable.
Let each parameter of the models is in the set

{−50, . . . , 0, . . . , 50}.
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A toy example, continued

The parameters (n = 4, x1 = −1) brings the proper model with
zero-error.
The evidence of the model fa is

p(D|fa) =
1

101

1

101
= 0.00010.

Let the denominators of the second models are in the set
{0, . . . , 50}.
Take account of c = −1/11 = −2/22 = −3/33 = −4/44.
The evidence of the model fc is

p(D|fc) =

(

1

101

)(

4

101

1

50

)(

4

101

1

50

)(

4

101

1

50

)

= 4.9202 . . .×10−12.

The result of the model comparison is

p(D|fa)

p(D|fc)
=

0.00010

2.5×10−12
.
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The Occam’s razor

If f2 — is more complex model, then its distribution p(D|f2) has
smaller values (variance has greater values). If the errors of both
models are equal, then the simple model f1 is more probable than
the complex model f2.
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Occam factor

The Occam factor is defined by the variance of the parameters

p(D|fi) ≈ p(D|wMP , fi )p(wMP |fi)det
− 1

2 (A/2π),

where A = −∇2lnp(w|D, fi) — Hessian at wMP . The variable σw |D

depends on the posterior distribution of the parameters w.
The p(wMP |fi ) = 1/σw and

Occam factor =
σw |D

σw
.

The Occam factor shows the «compression» of the parameter
space when the data have come.
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How to compare models, an example
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Multilevel models and data set indexing

The indexes of

• objects are {1, . . . , i , . . . ,m} = I , the split I = B1 ⊔ · · · ⊔ BK ;

• features are {1, . . . , j , . . . , n} = J , the active set A ⊆ J .

The regression model
f : (w, x) 7→ y ;

the selected model

E(y|X ) = XAwA, or E(yi |x) = w
T
Axi .

The multilevel model f is a set of the
models f = {fk |k = 1, . . . ,K}, such that for each k

E(yi∈Bk
|x) = w

T

(k)xi∈Bk
,

where
I = ⊔K

k=1Bk ∋ i .
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The model selection problem

Single model:

f̂ (w, x) = arg max
A⊆J

E (f (wA, x)) .

Multilevel model:

f̂(w(1), . . . ,w(K), x) = arg max
⊔K
k=1Bk=I

K
∏

k=1

E
(

f (w(k), xBk
)
)

.
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Multilevel linear models

Assume the target variable could be approximated by K linear
models with parameters w(k) ∈ R

n.
Then the distribution of the target variable y for the mixture of
normal distributions is

p(y |θ) =
K
∑

k=1

πkN (y |wT

(k)x, β).

The parameters θ are concatenated vectors:

θ = [w(1), . . . ,w(k),π, β]
T,

where

• w(1), . . . ,w(k) are parameters for each of K models,

• π = [π1, . . . , πk ] is weighs of the models,

• β variance of y , here the covariance matrix B = βIm for y.
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The matrix of hidden variables

The likelihood logarithm function for given data
set D = {(yi , xi )|i ∈ I} = (y,X ) is

ln p(y|θ) =
∑

i∈I

ln

(

K
∑

k=1

πkN (y |wT

(k)xi , β)

)

.

Introduce the matrix

Z =
[

z1, . . . , zm|z ∈ {0, 1}K
]

.

All the components of zi = [zi1, . . . , zik ] equal 0 but for k-th: this
data sample is generated by k-th model.
The log-likelihood function for joint distribution of y,Z is

ln p(y,Z |θ) =
m
∑

i=1

K
∑

k=1

zik ln
(

πkN (yi |w
T

(k)xi , β)
)

.
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Expectation-Maximization algorithm splits I = ⊔K
k=1Bk

Set initial θ∗ and estimate the vector θ and the matrix Z iteratively.

E-step: Introduce the matrix Γ = [γik ], as expectation that i -th
sample is generated by k-th model,

γik = E(zik) = p(k |xi ,θ
∗) =

πkN (yi |w
T

(k)xi , β)
∑K

k′=1 π
′
kN (yi |wT

(k)
xi , β).

Use Γ = [γik ] to define the posterior distribution p(Z |y,θ∗) of the
likelihood function

Q(θ) = EZ (ln p(y,Z |θ)) =
∑

i∈I

K
∑

k=1

γik

(

lnπk + lnN (yi |w
T

(k)xi , β)
)

.

M-step: Maximize function Q(θ) with respect to θ, where the
matrix Γ is fixed. The model weight coefficients must be
normalized,

∑K
k=1 πk = 1.
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Distance between two models of six time series

Introduce a distance function ρ(fk , fl) between two models. Use
the Jensen-Shannon divergency; ρkl ∈ [0, 1] is a metric:

ρ(pk‖pl ) = 2−1DKL

(

pk‖p
′
)

+ 2−1DKL

(

p′‖pl
)

,

where p′ = 2−1(pk + pl) and pk
def
= (p(w|D,A,B , fk). The

non-symmetric Kullback-Leibler divergency is

DKL

(

p‖p′
)

=

∫

w∈W

p′(w) ln
p(w)

p′(w)
dw.
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Distance between two models of six time series

Fifteen pairs of dots could be separated in the JS metric space
(y-axis), but hardly separated in the DTW space (x-axis).
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See
mvr.svn.sourceforge.net/viewvc/mvr/lectures/Strijov2012IAM.METU.Part4.pdf

or for short

bit.ly/K3i8zJ
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