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The plan and the goal

1 Bank credit scoring as the example of the problem that
requests feature generation.

2 Table of primitive functions.

3 Genetic and exhaustive generation algorithms.

4 Robust feature selection.

The goal is to show how the dimensions reduction algorithms could
be robust.
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The workflow of the bank credit scoring

Client’s application & history
↓

Client’s score: probability of fraud / default
↓

Accept (refuse) the application
↓

Make the agreement
↓

Client’s history
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Types of scorecards

• Application

• Behavioral

• Collection

Number of the records:

• ∼ 104 for long-term credits,

• ∼ 106 point-of-sale credits,

• ∼ 107 for churn analysis.

Type of detection

Fraud: deliquency 90+ on 3rd
︷ ︸︸ ︷

0 −→ 30+ −→ 60+ −→ 90+ −→ 120+
︸ ︷︷ ︸

Default: deliquency 90+ on any, but 1st

−→ 150+
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Scorecard developing

• Create the data set (the design matrix and the target vector)

• Map ordinal and nominal-scaled features to the binary ones

• Make the regression model

• Test it (multi-collinearity, stability, pooling, etc., see Basel-II)

• Determine the cut-off, according to the bank policy
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The data, general statistics

• Loans of 90+ delinquency, default cases, applications

• The fraud cases are rejected

• Overall number of cases ∼ 104–106

• Default rate ∼ 8–16%

• Period of observing: no less 91 days after approval

• Number of source variables ∼ 30–50

• Number records with missing data > 0, usually very small

• Number of cases with outliers > 0, 3σ2-cutoff
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List of variables

Variable Type Categories

Loan currency Nominal 3

Applied amount Linear

Monthly payment Linear

Term of contract Linear

Region of the office Nominal 7

Day of week of scoring Linear

Hour of scoring Linear

Age Linear

Gender Nominal 2

Marital status Nominal 4

Education Ordinal 5

Number of children Linear

Industrial sector Nominal 27

Salary Linear

Place of birth Nominal 94

. . . . . . . . .
Car number shown Nominal 2
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Scale conversion and grouping

• Applicant’s industry, nominal scale
Nominal Tourism Banking Education

John 1 0 0
Thomas 0 1 0
Sara 0 0 1

• Applicant’s education, ordinal scale
Ordinal Primary Secondary Higher

John 1 0 0
Thomas 1 1 0
Sara 1 1 1
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Problem statement, the data

1 The data set: x ∈ R
n, y ∈ R,

D = {(xi , yi)};

2 the design matrix X ∈ R
m×n,

X = [xT
1 , . . . , x

T
m]

T;

3 dependent variable y ∼ Bernoulli(σ);

y = [y1, . . . , ym]
T,

4 the model

y = σ(w) + ε, σ(w) =
1

1 + exp(−Xw)
.
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Problem statement, the target function

Since

p(y|w) =

m∏

i=1

p
yi
i (1− pi)

1−yi .

the quality criterion is the log likelihood function

− lnP(D|w) = −
∑

i∈L

(yi lnw
Txi + (1− yi ) ln(1− wTxi )) = S(w).

We must find the active set A ⊂ J and the model parameters wA,
such that

ŵ = arg min
w∈R|A|

S(w|A,DL) and

Â = arg min
A⊆J

S(A|ŵ,DT ),

where I = L ⊔ T .
Indexes of

• the objects, {1, . . . , i , . . . ,m} = I , split I = L ⊔ T ;

• the features {1, . . . , j , . . . , n} = J , denote by A the active set.
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Error function for the binomial distribution hypothesis

Let the dependent variable y is distributed binomially:

y ∼ B(f , 1− f ).

The likelihood function

p(D|w ,B , f ) =
∏

i∈I

f
yi
i (1− fi )

1−yi ,

and the error function

S(w) =
1

2
(w−wMP)

TA(w−wMP)+
∑

i∈I

yi ln fi +(1− yi) ln (1− fi ).

The covariance matrix B−1 is estimated using Newton-Raphson
method iteratively:

wk+1 = wk−(X TBX )−1X T(f−y) = (X TBX )−1X TB
(
Xwk−B−1(f−y)

)
.
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ROC-curve as the quality criterion

P N

P∗ TP FP

N∗ FN TN

TPR = TP/P = TP/(TP + FN)
FPR = FP/N = FP/(FP + TN)

Vadim Strijov Model Generation and Selection 12 / 37



Grouping, the optimization problem

We have an initial model defined by the set A; append the
generated set of the features and estimate their significance.

ξ = 1 2 3 . . . c , c is the number of categories, ξ ∈ C ;
↓ ↓ ↓ ↓

xj = γ1 γ2 γ3 . . . γc , |Γ| is the number of groups, γ ∈ Γ.

We must find the function

h : C → Γ.

The optimization problem is

(h, |Γ|) = argmax
h∈H

S(w)A∪j .
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List of primitive functions

Description In N in Out N out Comm Param

Nominal to binary nom 1 bin 1–4 - Yes
Ordinal to binary ord 1 bin 1–4 - Yes
Linear to linear segments lin 1 lin 1–4 - Yes
Linear segments to binary lin 1 bin 1–4 - Yes
Get one column of n-matrix bin 1–4 bin 1 - Yes
Conjunction bin 2–6 bin 1 Yes -
Disjunction bin 2–6 bin 1 Yes -
Negate binary bin 1 bin 1 - -
Logarithm lin 1 lin 1 - -
Hyperbolic tangent sigmiod lin 1 lin 1 - -
Logistic sigmoid lin 1 lin 1 - -
Sum lin 2–3 lin 1 Yes -
Difference lin 2 lin 1 No -
Multiplication lin,bin 2–3 lin 1 Yes -
Division lin 2 lin 1 No -
Inverse lin 1 lin 1 - -
Polynomial transformation lin 1 lin 1 - Yes
Radial basis function lin 1 lin 1 - Yes
Monomials: x

√

x , etc. lin 1 lin 1 - -
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Feature generation

There given

• the measured features Ξ = {ξ},

• the expert-given primitive functions G = {g(b, ξ)},

g : ξ 7→ x ;

• the generation rules: G ⊃ G , where the superposition
gk ◦ gl ∈ G w.r.t. numbers and types of the input and output
arguments;

• the simplification rules: gu is not in G, if there exist a rule

r : gu 7→ gv ∈ G.

The result is

the set of the features X = {x1, . . . , xj , . . . , xn}.

The number of features exceeds the number of clients!
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Examples of generated features

• Frac(Period of residence, Undeclared income)

• Frac(Seg(Period of employment), Term of contract)

• And(Income confirmation, Bank account)

• Times(Seg(Score hour), Frac(Seg(Period of employment),
Salary))
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Feature generation with symbolic regression

1 Select random nodes in two features,

2 exchange the corresponded subtrees,

3 modify the function at a random node for another one from
the primitive set.

Any modification must result an admissible superposition.

ξ1

ξ2

Monomial

Sum

ξ1

LogSig

Times

ξ2

Log

Inverse

ξ3

Monomial

Sum

ξ1

Sqrt

Frac
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Feature generation with polynomials

1. Consider cartesian product G × Ξ of the set of non-generated
variables Ξ the primitives G . Denote by aι the superpositions gv (ξu)
2. Product superpositions aι no more than P times

aι = gv (ξu), where the index ι = (v − 1)U + u

and

xj =
∏

aι1 . . . aιp
︸ ︷︷ ︸

p times

, where ι ∈ {1, . . . ,UV }, p ∈ {1, . . . ,P}.

In the other words

ξu
gv
−→ gv (ξu) ≡ aι

∏p

−−→ xj , j ∈ J .

Consider the linear models as the polynomial with a
monomial aι = gv (ξu)

f (w, x) =

UV∑

ι=1

wιaι+

UV∑

ι=1

UV∑

κ=1

wικaιaκ+

UV∑

ι=1

UV∑

κ=1

UV∑

τ=1

wικτaιaκaτ+· · · .
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Set of the primitive functions G

Let G = {g1, . . . , gl |g = g(b, ·, . . . , ·)} such that there are given

• the function g : (b, x)7→x ′,

• its parameters b (the empty set is allowed),

• number of arguments v(g) of the function g and the order of
the arguments (zero arguments is allowed),

• domain dom(g) and codomain cod(g).

Consider the model f (w, x) as a superposition

f (w, x) = (gi(1) ◦ · · · ◦ gi(K))(x), where w = [bT

i(1), . . . ,b
T

i(K)]
T.

The admissible superposition f

is the superposition, which satisfies

cod(gi(k+1)) ⊆ dom(gi(k)), for any k = 1, . . . ,K − 1.
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The tree Γf corresponds to the superposition f

• The vertex Vi corresponds to the primitive
function gs(i).

• The number of outgoing nodes from the
vertex Vi equal the number of arguments
of v(gs(i)).

• The order of the outgoing nodes from the
vertex Vi equals the order of the
arguments of gs(i).

• The leaves of the tree Γf corresponds to
the independent variables xi and
constants; they are treated as the
primitives g(∅).

The tree for the
superposition

sin(ln x1) +
x32
2
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The structural density and depth

The superposition depth d(f ) is

maximum depth of the tree Γf , number of the nodes V from the
root to the most distanced leaf.

The superposition complexity C (f ) is

the number of all admissible subtrees of the tree Γf .
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Generation of nonlinear models

Given: G = {gu , hv |u ∈ U , v ∈ V} is a set of the primitive functions
of one and two arguments, x = {xj |j ∈ J } — independent
variables.

Step 1: F1 =
{

f
(1)
s

}

= {gu(xj )} ∪ {hv (xj , xk)},

k ∈ J , s ∈
{
1, . . . , |U| · |J |+ |V| · |J |2

}
.

Step k:

(Gen) Append to F the set

F (k) =
{

f
(k)
s

}

=
{

gu

(

f
(k−1)
s′

)}

∪
{

hv

(

f
(k−1)
s′′ , f

(k−1)
s′′′

)}

,

(Rem) which does not contain the superpositions, isomorphic to

gu

(

f
(k)
s

)

and hv

(

f
(k)
s , f

(k)
s′

)

form the sets F (k) . . .F (1).
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Structural parameters and model selection

Exhaustive search in the set of the generalized linear models

µ(y) = w0 + α1w1x1 + α2w2x2 + . . .+ αRwRxR .

Here α ∈ {0, 1} is the structural parameter.

Find a model defined by the set A ⊆ J :

α1 α2 . . . α|J |

1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
1 1 . . . 1
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Discrete genetic algorithm for feature selection (simple ver.)

1 There are set of binary vectors {a1, . . . , aP}, a ∈ {0, 1}n;

2 get two vectors ap, aq, p, q ∈ {1, . . . ,P};

3 chose random number ν ∈ {1, . . . , n − 1};

4 split both vectors and change their parts:

[ap,1, . . . , ap,ν , aq,ν+1, . . . , aq,n] → a′p,

[aq,1, . . . , aq,ν , ap,ν+1, . . . , ap,n] → a′q;

5 choose random numbers η1, . . . , ηQ ∈ {1, . . . , n};

6 invert positions η1, . . . , ηQ of the vectors a′p, a
′
q ;

7 repeat items 2-6 P/2 times;

8 evaluate the obtained models.

Repeat R times; here P ,Q,R are the parameters of the algorithm
and n is the number of the corresponding model features.

Vadim Strijov Model Generation and Selection 25 / 37



Discrete genetic algorithm for grouping

1 There are set of binary vectors {a1, . . . , aP}, a ∈ {1, . . . , k}n;

2 get two vectors ap, aq, p, q ∈ {1, . . . ,P};

3 chose random number ν ∈ {1, . . . , n − 1};

4 split both vectors and change their parts:

[ap,1, . . . , ap,ν , aq,ν+1, . . . , aq,n] → a′p,

[aq,1, . . . , aq,ν , ap,ν+1, . . . , ap,n] → a′q;

5 choose random numbers η1, . . . , ηQ ∈ {1, . . . , n};

6 replace values in positions η1, . . . , ηQ of the vectors a′p, a
′
q for

random values from {1, . . . , k};

7 repeat items 2-6 P/2 times;

8 evaluate the obtained models.

Repeat R times; here P ,Q,R are the parameters of the algorithm
and k is desired number of categories.
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What is the optimal feature set?
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Multicorrelation and Variance Inflation Factor

• Extract j-th column from the design matrix X ,

• make regression XJ\{j} on y ≡ X{j},

• for the feature number j

VIFj =
1

1− R2
j

,

where the determination coefficient

R2
j = 1−

‖xj − f(x1, . . . , xj−1, xj+1, . . . , xn)‖
2

‖xj − x̃j |2
;

here x̃j is average vector for xj .
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Belsley method (1/3)

Make singular values decomposition of the design matrix X

X = UΛV T,

where UUT = Im, V TV = In, а Λ is the diagonal matrix with
elements λ1 > λ2 > . . . > λr , r is the rank of X , in our case r = n.
The matrix X TX is considered as the estimation of the correlation
matrix.

X TX = VΛTUTUΛV T = VΛ2V T,

X TXV = VΛ2.

Vadim Strijov Model Generation and Selection 29 / 37



Belsley method (2/3)

Find the conditional indexes

ηj =
λmax

λj
.

Obtain the variances of the parameters w

Var(w) = σ2(XTX )−1 = σ2(V T )−1Λ−2V−1 = σ2VΛ−2V T ,

where σ2 is the variance of the residuals.
The variance of wj is j-th diagonal element of Var(w).
Match the conditional index ηj and corresponding coefficients qij

σ−2var(wi ) =
n∑

j=1

υ2ij
λ2
j

= (qi1 + qi2 + . . . + qin),
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Belsley method (2/3)

Таблица: The decomposition of var(wi)

Conditional var(w1) var(w2) . . . var(wn)
index

η1 q11 q21 . . . qn1
η2 q12 q22 . . . qn2
...

...
...

. . .
...

ηn q1n q2n . . . qnn

• the bigger qij the bigger impact of j-th parameter into the
variance of i -th parameter;

• the bigger values of ηj mean there is a dependency between
the features;

• the i -th feature in involved in the multicorrelation if ηj is larger
and qij exceeds a given threshold.
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Stepwise feature selection algorithm

Add stage:
Add the feature, which brings minimum to the error function S(w)

j∗ = arg min
j∈J\Ak−1

S(w|DL, fAk−1∪{j}).

Ak = Ak−1 ∪ {j∗}

until S(fAk
|w∗,D) exceeds its minimum value on this stage but no

more than a given ∆SAdd.
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Stepwise feature selection algorithm

Del stage:
Dell the feature according to the Belsley method:

i∗ =
t∑

g=1

[
η2g > ηt

]

j∗ = arg max
j∈Ak−1

t∑

g=t−i∗+1

qjg

Ak = Ak−1\j
∗

until S(fAk
|w∗,D) exceeds its minimum value on this stage but no

more than a given ∆SDel.
Repeat Add and Del stages until the value of the error function
S(fAk

|w∗,D) became stable.
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The stepwise algorithm

The plot shows how the error function S(w) varies during the
steps. The control sample set C is used.
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Expectation and variance of the error function, empirical approach

For given feature set A ∈ J perform N-fold cross-validation
procedure: I = L ⊔ C. Treat the obtained values of the error
function S(w|C) as realization of corresponding random variable.
Estimate the expectation and variance:

ES =
1

N

N∑

i=1

Si ,

DS =
1

N

N∑

i=1

(Si − ES)2,

where N — number of folds (splits) and Si is computed on the i -th
split.
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Expectation and variance of the error function, empirical approach
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Red dots show the minimum expectation ES for the corresponding
number of features |A|.
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Comparison table of the feature selection algorithms

Algorithms SL SC AIC BIC Cp lgκ k

Genetic 0.073 0.107 -1152 -1072 337 13 26
GMDH 0.146 0.194 -1076 -1045 745 6 10
Stepwise 0.128 0.154 -1092 -1055 644 7 12
Ridge 0.111 0.146 -819 -330 832 33 160
Lasso 0.121 0.147 -1089 -1034 611 5 18
Stage 0.071 0.096 -1157 -1077 324 9 26
FOS 0.106 0.135 -1105 -1044 527 7 20
LARS 0.098 0.095 -1102 -1017 492 7 28
Evidence 0.097 0.123 -1118 -1054 469 5 21
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See
mvr.svn.sourceforge.net/viewvc/mvr/lectures/Strijov2012IAM.METU.Part3.pdf

or for short

bit.ly/K3i8zJ

The next

1 model comparison,

2 multimodelling.
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