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Extended Abstract

1 Introduction.

The paper1 is devoted to the logistic regression analysis [1], applied to classifica-
tion problems in biomedicine. A group of patients is investigated as a sample set;
each patient is described with a set of features, named as biomarkers and is classi-
fied into two classes. Since the patient measurement is expensive the problem is to
reduce number of measured features in order to increase sample size.

The responsive variable is assumed to follow a Bernoulli distribution. Also,
parameters of the regression function are evaluated [2].

With given set of features, the model is excessively complex. The problem
is to select a set of features of smaller size, that will classify patients effectively.
In logistic regression features are usually selected by stepwise regression [3]. In
the computational experiment, exhaustive search is implemented. This makes the
experts sure that all possible combinations of the features were considered. The
authors use the area under ROC curve [4] as the optimum criterion in the feature
selection procedure.

The problem of classification is associated with minimum sample size deter-
mination. In the paper, the following methods are discussed:

1. Method of confidence intervals, a method of univariate statistics.

2. Method of sample size evaluation in logistic regression [5]. Unlike the pre-
vious one, this method considers the distribution of the responsive variable
according to the logistic regression model.

3. Cross-validation, method which evaluates sample size by observing potential
overfitting [6].
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4. Comparing different subsets of the same sample by computing Kullback-
Leibler [7] divergence between probability density functions of model pa-
rameters, evaluated at these subsets.

2 Classification problem

Consider the sample set D = {(xi, yi)} , i = 1, . . . ,m, of m objects (patients).
Each patient is described by n features (biomarkers), xi ∈ Rn and belongs to one
of two classes: yi ∈ {0, 1}. The logistic regression problem assumes that vector of
responsive variables y = [y1, . . . , ym]T is a vector of bernullean random variables,
yi ∼ B(θi) with the probability density function

p(y|w) =
m∏
i=1

θyii (1− θi)1−yi . (1)

Use the maximim likelihood method, write the error function for (1) as

E(w) = − ln p(y|w) = −
m∑
i=1

yi ln θi + (1− yi) ln (1− θi). (2)

find vector of parameters ŵ of regression function, one has to solve the following
optimization problem:

ŵ = arg min
w∈Rn

E(w). (3)

Let us define the probability of a case as

f(xTi w) =
1

1 + exp(−xTi w)
= θi. (4)

Then the classification algorithm is defined as:

a(x, c0) = sign
(
f(x,w)− c0

)
, (5)

where c0 is a cut-off value of regression function (4).

3 Sample size determination

Investigated data describes patients of two classes: those who have already experi-
enced a heart attack and patients that might experience it in future. Concentrations
of proteins in blood cells are used as features. There are thirty one patients in first
class and fourteen in the second. Having this few observations we must estimate
minimum sample size m∗ required to obtain adequate results of classification. In
this chapter four methods of sample size determination are presented. The results
of implementing this methods are described and analyzed in the section “Compu-
tational experiment”.

2



3.1 Method of confidence intervals

Consider the data set D = {(xi, yi)} , i ∈ I = {1, . . . ,m} in which every respon-
sive variable yi depends on a single independent variable xi ∼ N (µ, σ2). Suppose
∆ = x̄− µ is the difference between the average

x̄ =
1

m

m∑
i=1

xi

and known expected value µ of the random variable xi. Given the variance σ2 we
obtain a standard normally distributed variable

Z =
x̄− µ
σ

√
m =

∆

σ

√
m ∼ N (0, 1). (6)

Then m∗ can be computed with significance level α as

m∗ =
(zα/2σ

∆

)2
, (7)

where zα/2 is defined by P
{
|Z| ≥ zα/2

}
= α.

In this paper a multi feature problem is considered and every responsive vari-
able yi is described by the vector of independent variables xi. Nevertheless, the
formula (7) can be used for each feature separately as components of xi are as-
sumed to be independent.

3.2 Method of sample size evaluation in logistic regression.

Fixate a setA of indexes. For every feature in the set, defined byAwe can compute
the sample size m∗, required to include this feature into the model feature set.
Consider hypothesis

H0 : wj = 0, j 6∈ A,
where wj — j-th element of vector w of logistic regression parameters. This way,
we assume that j-th feature is not included into model. Having estimated vector of
parameters under H0, we obtain vector wA, and under alternative H1 : wj 6= 0 we
get wA∗ , where indexes set A∗ is composed of A and index j. Then H0 and H1

can be reformulated in terms of parameters θi of Bernullean distribution B(θ) and
rewritten as

H0 : θ = θA, H1 : θ = θA∗ .

Note that the exact values of θi in every case are not important, we are only
interested in cut-off value c0. Finally, we have:

H0 : 1− c0 = p0, H1 : 1− c0 = p1.

In this case, the formula for m∗ is

m∗ =
p0c0

(
Z1−α/2 + Z1−β

√
p1c1
p0c0

)2
(p1 − p0)2

. (8)

Note that m∗, given by (8) depends on index j of feature appearing in H0.
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3.3 Using Kullback-leibler divergence to estimate sample size.

The presented approach is based on comparing probability density functions of
model parameters. Consider two “similar” sets of indexes of objects B1 ∈ J and
B2 ∈ J . Indexes sets B1 and B2 are regarded as “similar” if

|B1 \ B2 ∪ B2 \ B1| = 1.

This way B2 can be obtained from B1 by deleting, replacing or adding one element.
If sample DB1 is large enough, parameters w1 evaluated at DB1 should not be

significantly different from w2 obtained at “similar” sample DB2 . The simplest
way to compare them is to compute Euclidean distance between w1 and w2:

||w1 −w2|| =

√√√√ |A|∑
i=1

(
w1
i − w2

i

)2
.

In this paper probability density functions of parameters at DB1 and DB2 are com-
pared by computing Kullback-Leibler divergence between them. Consider model
function (4) and assumption about the random variable yi distribution (1). Having
fixated the data set D and model fA = f(XT

Aw), rewrite (1) as

p(y|X,w, fA) ≡ p(D|w, fA) =
m∏
i=1

θyii (1− θi)1−yi . (9)

Suppose as well, that the vector of regression parameters w follows normal distri-
bution w ∼ N (w0, σ

2I|A|) with the density function

p(w|fA, α) =
( α

2π

) |A|
2

exp(−α
2
||w −w0)||2), (10)

in which α−1 = σ2, I|A| — the unit matrix of size |A|.
To find the probability density function p(w|D,α, fA) of the regression pa-

rameters, use Bayes’ theorem

p(w|D,α, fA) =
p(D|w, fA)p(w|α, fA)

p(D|α, fA)
, (11)

where p(D|w, fA) is the data likelihood, p(w|α, fA) given a priori probability
density function. In (11) the normalization factor p(D|α, fA) is defined by

p(D|α, fA) =

∫
p(D|w, fA)p(w|α, fA)dw.

Substituting (9) and (10) into (11) and denoting Z(α) = p(D|α, fA), we
obtain

p(w|D, fA) =
p(y|x,w, fA)p(w|fA, α)

Z(α)
=

=
α
|A|
2

(2π)
|A|
2 Z(α)

exp(−α
2
||w −w0)||2)

m∏
i=1

θyii (1− θi)1−yi ,
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where Z(α) = p(D|α, fA) is the normalization factor.
Consider two “similar” samples DB1 and DB2 . Denote the posterior distri-

butions p1(w) ≡ p(w|DB1 , α, fA) and p2(w) ≡ p(w|DB2 , α, fA) respectively.
“Similarity” of these distribution can be computed as

DKL(p1, p2) =

∫
w∈W

p1(w) ln
p1(w)

p2(w)
dw. (12)

To estimate the minimum sample size m∗ we randomly delete objects from data
set one by one, consequently reducing sample size m, and computing the posterior
distribution of vector w by (10). Then Kullback-Leibler divergence (12) between
the probability density functions of parameters evaluated at “similar” data sets.
This process is repeated N times and then the results are everaged. The sample
size m∗ is considered adequate if Kullback-Leibler divergence (12) changes less
than in ε2 for m ≥ m∗.

4 Conclusion

The paper presents an algorithm that classifies patients with cardio-vascular de-
cease. To select the regression model the exhaustive search algorithm is used.
The paper proposes a new method of sample size determination. It is based on
cross-validation technique and uses the Kullback-Leibler divergence between two
distribution of model parameters, evaluated on similar data subsets. Four various
algorithms os sample size determination are compared.
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