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Abstract

The problem of sample size estimation is important in the medical applications, especially
in the cases of expensive measurements of immune biomarkers. The papers describes the
problem of logistic regression analysis including model feature selection and includes the
sample size determination algorithms, namely methods of univariate statistics, logistics
regression, cross-validation and Bayesian inference. The authors, treating the regression
model parameters as a multivariate variable, propose to estimate the sample size using the
distance between parameter distribution functions on cross-validated data sets.
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1. Introduction1

The paper is devoted to the logistic regression analysis [1], applied to classification2

problems in biomedicine. A group of patients is investigated as a sample set; each patient3

is described with a set of features, named as biomarkers and is classified into two classes.4

Since the patient measurement is expensive the problem is to reduce number of measured5

features in order to increase sample size.6

The responsive variable is assumed to follow a Bernoulli distribution. Also, parameters7

of the regression function are evaluated [2, 3].8

With given set of features, the model is excessively complex. The problem is to select a9

set of features of a smaller size, that will classify patients effectively. In logistic regression,10

features are usually selected by stepwise regression [4, 5]. In the computational experiment,11

exhaustive search is implemented. This makes the experts sure that all possible combina-12

tions of the features were considered. The authors use the area under ROC curve [6] as13

the optimum criterion in the feature selection procedure.14

The problem of classification is associated with minimum sample size determination.15

In the paper, the following methods are discussed:16
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1. Method of confidence intervals: a method of univariate statistics.17

2. Method of sample size evaluation in logistic regression [7, 8]: unlike the previous one,18

this method considers the distribution of the responsive variable according to the19

logistic regression model.20

3. Cross-validation: a method which evaluates sample size by observing potential over-21

fitting [9, 10].22

4. Comparing different subsets of the same sample by computing Kullback-Leibler [11]23

divergence between probability density functions of model parameters, evaluated at24

these subsets.25

The data, used while conducting computational experiment can be found here [12].26

2. Classification problem27

Consider the sample set D = {(xi, yi) : i = 1, . . . ,m}, of m objects (patients). Each28

patient is described by n features (biomarkers), xi ∈ Rn and belongs to one of two classes:29

yi ∈ {0, 1}. The logistic regression problem assumes that the vector of responsive variables30

y = [y1, . . . , ym]T is a vector of Bernoulli random variables, yi ∼ B(θi) with the probability31

density function32

p(y|w) =
m∏
i=1

θyii (1− θi)1−yi . (1)

We use the maximim likelihood method, write the error function for (1) as33

E(w) = − ln p(y|w) = −
m∑
i=1

yi ln θi + (1− yi) ln (1− θi). (2)

find vector of parameters ŵ of regression function, one has to solve the following opti-34

mization problem:35

ŵ = arg min
w∈Rn

E(w). (3)

Let us define the probability of a case as36

f(xTi w) =
1

1 + exp(−xTi w)
= θi. (4)

To solve the problem (3), using
df(ξ)

dξ
= f(1− f),

we compute gradient of the error function E(w):

∇E(w) = −
m∑
i=1

(
yi(1− θi)− (1− yi)θi

)
xi =

m∑
i=1

(θi − yi)xi = XT (θ − y),

in which θ = [θ1, . . . , θm]T and the matrix X =
[
xT1 , . . . ,x

T
m

]T
represents features sets.37
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Parameters are evaluated by Newton-Raphson method. Denote by Σ a diagonal ma-
trix with diagonal elements Σii = θi(1 − θi) (i = 1, . . . ,m). Set the initial value w =
[w1, . . . , wn]T of ŵ

wj =
m∑
i=1

yi(1− yi) (j = 1, . . . , n),

Then the (k + 1)-th iteration of evaluation of ŵ is38

wk+1 = wk − (XTΣX)−1XT (θ − y) =

(XTΣX)−1XTΣ(Xwk −Σ−1(θ − y)).
(5)

The process is repeated until the Euclidean distance ‖ wk+1−wk ‖ is sufficiently small.39

Thus, the classification algorithm is defined as:40

a(x, c0) = sign
(
f(x,w)− c0

)
, (6)

where c0 is a cut-off value of regression function (4), defined by (7).41

Quality of classification. Let us use an additional to (1) quality functional AUC, or the
area under the ROC-curve. Introduce TPR(ξ), which stands for true positive rate

TPR(ξ) =
1

m

m∑
i=1

[a(xi, ξ) = 1][yi = 1]

and FPR(ξ)means the false positive rate

FPR(ξ) =
1

m

m∑
i=1

[a(xi, ξ) = 1][yi = 0].

Here, the following denotation is used:

[y = 1] =

{
1, y = 1;

0, y 6= 1.

Thus, the bigger AUC value is, the better is the classifier.42

Defining c0 value. Every point [FPR(c0),TPR(c0)] of the ROC-curve corresponds to some43

c0 ∈ [0, 1] value. As shown in figure 1, the most distant from segment [(0,0);(1,1)] point of44

the ROC-curve corresponds to the c0 value used in (6):45

ĉ0 = arg max
ξ∈[0,1]

‖
(
TPR(ξ),FPR(ξ)

)
−(ξ, ξ) ‖= arg max

ξ∈[0,1]

√
(TPR(ξ)− ξ)2 − (FPR(ξ)− ξ)2.

(7)
Defining ĉ0 includes computing AUC value and, therefore, computation of (6) and iterative46

estimation of parameters w according to (5).47
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Figure 1: Sample size m∗, estimated by confidence interval method and method for logistic regression.

3. Feature selection problem48

Let A be a subset of the indexes of the features, and A ⊆ J = {1, . . . , n}, Â be the49

optimal set of the indexes. Denote by XA the matrix composed of the columns of matrix X50

with indexes in A, and wA be the corresponding vector of parameters. Thus, the feature51

selection problem is a maximization one:52

Â = arg max
A⊆I

AUC(A), subject to |A| = const. (8)

The value of AUC(A) ≡ AUC(XA, ŵA, ĉ0,y) is computed for a set A of indexes and53

the parameters ŵA and c0 are defined by (3) and (7), respectively.54

The maximization problem (8) is solved in the computational experiment by exhaustive55

search. This approach is possible due to a relatively small amount of features and it is56

required by experts.57

As the cardinality of A is unknown, the set of indexes of objects I is divided into58

two disjoint subsets, I = L t T , the learning set and the test set : the parameters w59

are estimated at DL, while the classification quality is computed at DT . The maximum60

cardinality of A is limited by experts: |A| shall not exceed four elements. We refer to the61

feature sets, obtained by solving (8), as optimal sets, and name the features included into62

optimal sets as the most informative features.63

4. Sample size determination64

Investigated data describes patients of two classes: those who have already experienced65

a heart attack and patients that might experience it in future. Concentrations of proteins66

in blood cells are used as features. There are 31 patients in first class and 14 in the second.67

Having this few observations we must estimate the minimum sample size m∗ required68

to obtain adequate results of classification. In this chapter four methods of sample size69

determination are presented. The results of implementing this methods are described and70

analyzed in Section 5 on computational experiment.71

4



4.1. Method of confidence intervals.72

Consider the data set D = {(xi, yi) : i ∈ I = {1, . . . ,m}} in which every responsive
variable yi depends on a single independent variable xi ∼ N (µ, σ2). Suppose ∆ = x̄− µ is
the difference between the average

x̄ =
1

m

m∑
i=1

xi

and known expected value µ of the random variable xi. Given the variance σ2, we obtain73

a standard normally distributed variable74

Z =
x̄− µ
σ

√
m =

∆

σ

√
m ∼ N (0, 1). (9)

Then m∗ can be computed with significance level α as75

m∗ =
(zα/2σ

∆

)2
, (10)

where zα/2 is defined by P
{
|Z| ≥ zα/2

}
= α.76

When m ≥ 30, the variable Z can be regarded as normally distributed even if the
distribution of xi is different from normal or if σ in (9) is replaced with

s =

√√√√ 1

m− 1

m∑
i=1

(xi − x̄)2.

Otherwise, it is essential that the variables xi are normally distributed; moreover the77

variance σ should be known.78

In this paper a multi-feature problem is considered and every responsive variable yi79

is described by the vector of independent variables xi. Nevertheless, formula (10) can be80

used for each feature separately as the components of xi are assumed to be independent.81

This method only helps to obtain a rough estimation of m∗. The reason is that neither µ
nor σ2 are known. Also it is more likely that xi is distributed as a mixture of distributions:

xi ∼

{
N (µ1, σ

2
1), with probability θi,

N (µ2, σ
2
2), with probability 1− θi,

(11)

where θi is defined by (4).82

4.2. Method of sample size evaluation in logistic regression.83

Fixate a set A of indexes. For every feature in the set, defined by A, we can compute
the sample size m∗, required to include this feature into the model feature set. Consider
the hypothesis

H0 : wj = 0, j 6∈ A,

5



where wj being the jth element of the vector w of logistic regression parameters. In
this way, we assume that the jth feature is not included into model. Having estimated the
vector of parameters under H0, we obtain the vector wA, and under alternative H1 : wj 6= 0
we get wA∗ , where the index set A∗ is composed of A and index j. Then H0 and H1 can
be reformulated in terms of parameters θi of Bernoulli distribution B(θ) and rewritten as

H0 : θ = θA, H1 : θ = θA∗ .

Note that the exact values of θi in each case are not important, we are only interested
in cut-off value c0. Finally, we have:

H0 : 1− c0 = p0, H1 : 1− c0 = p1.

To test the hypothesis H0, we calculate statistic

Z =
p̂− p0√
p0c0/m

, p̂ =
1

m

m∑
i=1

yi

where p̂ is the maximum likelihood estimator for θ. Under H0,

Z ∼ N
(
p1 − p0,

√
p1c1
p0c0

)
.

Then

Z

√
p0c0
p1c1

+
p0 − p1√
p1c1/m

=

√
p0c0
p1c1

(
Z +

p0 − p1√
p0c0

√
m

)
∼ N (0, 1).

With significance level α the power of the criterion can be computed:

1− β = P{|Z| > Zα/2|H1} = Φ

(√
p0c0
p1c1

(
Zα/2 +

p0 − p1√
p0c0/m

))
.

Thus we obtain the following formula for m∗84

m∗ =
p0c0

(
Z1−α/2 + Z1−β

√
p1c1
p0c0

)2
(p1 − p0)2

. (12)

Note, that m∗, given by (??) depends on index j of a feature appearing in H0.85

4.3. Cross-validation.86

This method provides a minimum sample size estimation, based on observing overfit-87

ting. When using this approach, the data sample is divided into learningDL = {(xi, yi) : i ∈ L}88

and test set DT = {(xi, yi) : i ∈ T }, where I = L
⊔
T . Fixate a set A of indexes of model89

features. Denote by AUC(A,D) the quality functional value computed based on the data90

set D. A decrease of the quality functional AUC(A, DT ) value computed on the basis91
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of the training set and compared to AUC(A, DL) might indicate overfitting. We define92

overfitting as the following ratio:93

RS(m) =
AUC(A, DT (m))

AUC(A, DL(m))
. (13)

In this case, the model f approximates the learning set, but it can not be used to describe
the test set. Overfitting might occur when the sample size m is too small. To estimate m∗,
we consequentially increase sample size m while splitting the data set into learning and
test sets under a given ratio:

|T (m)|/|L(m)| = const ≤ 0.5.

With increase of m, the RS(m) approaches to one. We find the sample size m∗ adequate,94

if for every m ≥ m∗ the RS(m) ratio is more than a given value 1− ε1.95

4.4. Using Kullback-leibler divergence to estimate sample size.96

The presented approach is based on comparing probability density functions of model
parameters. Consider two “similar” sets of indexes of objects B1 ∈ J and B2 ∈ J . Index
sets B1 and B2 are regarded as “similar” if

|B1 \ B2 ∪ B2 \ B1| = 1.

In this way, B2 can be obtained from B1 by deleting, replacing or adding one element.
Parameters, evaluated at different samples also differ. Figure 2 shows how the separating
hyperplane given by

xTw = ln

(
c0

1− c0

)
changes when two elements are added to the sample. If the sample DB1 is large enough,

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

Figure 2: Two classes are separeted by hyperplane. Doted line represents the hyperplane position after
the two objects (in circles) were added.
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the parameters w1 evaluated based on DB1 should not be significantly different from w2

obtained with a “similar” sample DB2 . The simplest way to compare them is to compute
Euclidean distance between w1 and w2:

‖ w1 −w2 ‖=

√√√√ |A|∑
i=1

(w1
i − w2

i )
2
.

In this paper probability density functions of parameters at DB1 and DB2 are compared by97

computing Kullback-Leibler divergence between them. Consider model function (4) and98

the assumption about the random variable yi distribution (1). Having fixated the data set99

D and model fA = f(XT
Aw), we rewrite (1) as100

p(y|X,w, fA) ≡ p(D|w, fA) =
m∏
i=1

θyii (1− θi)1−yi . (14)

Suppose as well, that the vector of regression parameters w follows a normal distribution101

w ∼ N (w0, σ
2I|A|) with the density function102

p(w|fA, α) =
( α

2π

) |A|
2

exp
(
−α

2
‖ w −w0) ‖2

)
, (15)

in which α−1 = σ2, I|A| being the unit matrix of format |A| × |A|.103

To find the probability density function p(w|D,α, fA) of the regression parameters, we104

use Bayes’ Theorem105

p(w|D,α, fA) =
p(D|w, fA)p(w|α, fA)

p(D|α, fA)
, (16)

where p(D|w, fA) is the data likelihood, p(w|α, fA) given a priori probability density func-
tion. In (16), the normalization factor p(D|α, fA) is defined by

p(D|α, fA) =

∫
p(D|w, fA)p(w|α, fA)dw.

Substituting (14) and (15) into (16) and denoting Z(α) = p(D|α, fA), we obtain

p(w|D, fA) =
p(y|x,w, fA)p(w|fA, α)

Z(α)
=

=
α
|A|
2

(2π)
|A|
2 Z(α)

exp(−α
2
‖ w −w0) ‖2)

m∏
i=1

θyii (1− θi)1−yi ,

where Z(α) = p(D|α, fA) is the normalization factor.106

Consider two “similar” samples DB1 and DB2 . Denote the posterior distributions107

p1(w) ≡ p(w|DB1 , α, fA) and p2(w) ≡ p(w|DB2 , α, fA), respectively. “Similarity” of these108

distribution can be computed as109

DKL(p1, p2) =

∫
w∈W

p1(w) ln
p1(w)

p2(w)
dw. (17)

8



To estimate the minimum sample size m∗, we randomly delete objects from data set one110

by one, consequently reducing the sample size m, and computing the posterior distribution111

of vector w by (15). Then the Kullback-Leibler divergence (17) between the probability112

density functions of parameters evaluated at “similar” data sets is computed. This process113

is repeated N times and then the results are everaged. The sample size m∗ is considered114

adequate if Kullback-Leibler divergence (17) changes less than in ε2 for m ≥ m∗.115

5. Computation experiment116

5.1. Experiment on real data.117

The data set contains observations of concentrations of 20 proteins in blood cells for118

patients of two classes, containing 31 and 14 objects, respectively. In Table 2 all features,119

or biomarkers, are listed.120

Table 1: The results of feature selection.
A S(A)

K, L , L/P 0.9750
K, L, K/M, K/Q 0.9671

K, L, L/M, L/T/SO 0.9933
K, L, K/M, L/R 0.9867
K, K/M, L/P, 0.9742

Table 1 presents optimal sets of features, corresponding to maximum AUC values and121

the exact AUC values. Here, K = 5 optimal sets were selected for investigation.122

Table 2: Number of entries into K optimal sets for each feature.
K L K/M L/M K/N K/O L/O K/P L/P K/Q
5 4 3 1 0 0 0 0 2 1

K/R L/R L/R/SA L/T/SA L/T/SO U/V U/W U/X U/Y U/Z
0 1 0 0 1 0 0 0 0 0

Due to high costs of medical investigation of one patient, it is essential to reduce number123

of measured biomarkers. It is suggested to measure only the most informative features.124

Having united indexes of all the features from Table 1, we obtain a set of indecies of the125

most informative features S =
K⋃
i=1

{Ai}. For every feature the number of times that it was126

involved in S is computed. Table 2 shows this number for every feature.127

Minimum sample size determination. In the histogram of Figure 3 the sample size values128

m∗, are computed for separate features by (10) and (12), are represented. The sample129

size m∗ was only computed for those features included in model, the rest of them are not130

informative and should not be considered.131

We note that sample size estimations, obtained by (10) and (12), have a similar de-132

pendence on a feature’s index. The reason is that in both methods sample size estimation133
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Figure 3: Sample size estimations computed by method of confidence intervals and method for logistic
regression for the most informative features.

of jth feature depends on how informative the feature is. In the logistic regression, in-134

formative features have a significant value of the corresponding element wj of parameters135

vector. In (??), (p0 − p1)2 is placed in the denominator. The nearer wj tend to zero, the136

less (p0−p1)2 the value is, and, therefore, the larger m∗ is. In this way, minimum values of137

m∗ correspond to the most informative features, whereas abnormally large values (∼ 104
138

or more) answer to those features, that are not included in model — they have the least139

wj values.140

15 20 25 30
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S

Figure 4: RS(m) ratio.

The dependence of the RS(m), defined by (13) on the sample size m is plotted in141

Figure 4. Provided with data set, described in Subsection 5.1 the RS(m) ratio is unable to142

reach an asymptote, and the following form of the dependence RS(m) can not be analyzed,143

so the estimation given by this method is m∗ ≥ 30.144

Figure 5.1 demonstrates the dependence of averaged by N = 100 trials Kullback-145

Leibler (17) divergence on the sample size m is depicted. It is seen, that having more than146
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27 elements in the data set leads to changing of the Kullback-Leibler divergence relatively147

slowly: when the sample size m > 27 is reduced by one element, the graph shows almost148

no change of Kullback-Leibler divergence, compared to the area of smaller m. Thus, we149

obtain a minimum sample size estimation m∗ ' 30.
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Figure 5: a. Averaged Euclidean divergence ||wm −wm+1|| b.Kullback-Leibler divergence between prob-
ability density functions of model parameters.

150

To compare the results obtained by different methods, we represent them in the Table 3.151

The amount of observations in investigated data is quite small, so cross-validation method152

and the method involving Kullback-Leibler divergence computation only provide us with153

a lower bound of m∗. These methods are more suited for large data sets. Confidence154

interval method and method of logistic regression show numerically different results, as155

the confidence interval method is quite rough. However, the dependence of m∗ on the156

feature index is practically the same for these methods, both of them give estimations157

which depend on how informative the feature is.

Table 3: Sample size estimations.

confidence intervals logistic cross-validation Kullback-Leibler
102 − 104 ∼100 ≥ 30 ' 30

158

5.2. Experiment on synthetical data.159

The experiment was also carried out on synthetical data. Each class contains one noisy160

feature and two informative features (distributed normally and uniformly), and it contains161

100 objects. It is seen in Figure 6, that classes are easily distinguished.162

Furthermore, it is seen in Figure 7, that for sample size m ≥ m∗ = 100 change of RS(m)163

ratio is not more than 0.01, so we conclude that m∗ ≤ 100.164

The results of sample size estimation m∗ obtained by (10) and (??), are illustrated by 8.165
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Figure 7: Dependence of RS ratio on m, obtained with cross-validation 3:1.

In this case, the estimations of m∗ given by the confidence interval method are more166

precise (closer to those obtained by cross-validation). This might happen because the167

example is too simple. The real data, investigated in Subsection 5.1 is assumed to follow168

a mixture of normal distributions (11). To approximate real data, consider a data set169

with just one independent variable, distributed according to (11). Dependence of sample170

size estimations on the |µ1 − µ2| difference is observed. It is seen in Figure 9, that in171

this case (10) gives overrated results, while estimations of m∗, obtained by (??) are more172

adequate.173

6. Conclusion174

The paper presents an algorithm that classifies patients with cardio-vascular decease.175

To select the regression model the exhaustive search algorithm is used. The paper proposes176

a new method of sample size determination. It is based on cross-validation technique177

and uses the Kullback-Leibler divergence between two distribution of model parameters,178
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Figure 8: Sample size m∗, estimated for each model feature by confidence interval method and method of
logistic regression.
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Figure 9: Sample size m∗, estimated by confidence interval method and method of logistic regression.

evaluated on similar data subsets. Four various algorithms os sample size determination179

are compared.180
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