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Abstract

The paper addresses the problem of designing Brain-Computer Interfaces. It investi-
gates feature selection methods in regression, applied to ECoG-based motion decoding.
The problem is to predict hand trajectories from the voltage time series of cortical activity.
A special characteristic of this problem is the inherently multi-way structure of feature de-
scription. The feature description resides in spatial-spectra-temporal domain and includes
the voltage time series and their spectral representation. Since electrocorticographic data
is highly correlated in temporal, spectral and spatial domains, redundancy of the feature
space as well as its dimensionality become a major obstacle for robust solution of the re-
gression problem both in multi-way and flat cases. Feature selection reduces dimensionality
and increases model robustness. It plays the crucial role in obtaining adequate predictions.

The main contribution of this paper is the following. We propose a filtering feature
selection for multi-way data. The proposed method extends quadratic programming fea-
ture selection (QPFS) approach. QPFS selects a subset of features by solving a quadratic
problem. It incorporates estimates of similarity between features and their relevance to the
regression problem. QPFS offers an effective way to leverage similarities between features
and their importance. Our modification allows to apply QPFS to multi-way data. By
taking the multi-way structure of features into account, the proposed modification reduces
computational costs of optimization problem in QPFS. Exerimental outcomes demonstrate
that the proposed modification improves prediction quality of resultant models. The pro-
posed method is model-free and provies interpretable results, which makes it relevant for
knowledge extraction and domain analysis.
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1. Introduction

We propose a multi-way formulation of a recent approach to filtering feature selection by
Katrutsa (Katrutsa & Strijov, 2017), Quadratic Programming Feature Selection (QPFS). A
special feature of QPFS is the ability to consider the relationships between features. QPFS
is formulated as a quadratic program which minimizes correlation between features while
maximizing feature relevance. The paper (Katrutsa & Strijov, 2017) provides extensive
comparison of QPFS to LARS, Lasso, Stepwise, Ridge and feature selection with genetic
algorithm. The test data displayed various kinds of configurations of features and target
vectors. QPFS was shown to outperform the alternatives according to a number of criteria:
VIF, BIC and regression quality.

The original QPFS ignores multi-way structure of the data. To adapt this powerful
method to feature selection in movement prediction for BCI construction, we propose a
multi-way extension of QPFS. We introduce a separate feature similarity matrix for each
modality of the feature description. This reduces dimensionality of optimization problem,
which makes the proposed approach applicable for higher dimensionalities. We compare
the original and multi-way QPFS applied to trajectory reconstruction problem and show
that proposed modification without loss in quality. We also compare both versions of QPFS
and PLS regression.

The main contributions of this paper are:

1. We propose a modification a QPFS, which preserves its attractive properties and also
considers multi-way data structure.

2. We apply the proposed method to the problem of hand trajectory reconstruction and
show that the quality of reconstruction improves with our method.

3. We compare regression results, obtained with the proposed feature selection method
and with alternative regression techniques, according to several criteria and show
that the results of the proposed method are at least as accurate.

2. Problem statement

The raw ECoG data contains multivariate time series s(t) ∈ RNch with voltage mea-
surements for Nch channels, and multivariate target time series y(t) ∈ R3 with 3D wrist
coordinates1. These time series are converted to the data sample (D,Y):

D ∈ RM×T×F×Nch , D(m,:,:,:) = Xm, Y = [yT
1 , . . . ,y

T
M ]T, (1)

where each observation corresponds to a certain wrist position ym = y(tm) and is described
by a three-way matrix Xm ∈ RT×F×Nch such that each slice X(:,:,n)

m ∈ RT×F of Xm stores
time-frequency features extracted from the time series [sn(tm − ∆t), . . . , sn(t)] along the

1The dataset (Shimoda et al., 2012) includes trajectories of elbows, shoulders and possibly others. In
the experiments we used wrist positions of the hand contralateral to the electrodes placements as targets.
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Table 1: Multi-way feature selection methods.

Method

Type

(Cao et al., 2014): feature selection based on tensor SVM weights Wrapper
(Smalter et al., 2009): feature selection based on tensor SVM weights
with sparsity induced either with quadratic programming or regular-
ization

Wrapper

(Li & Zhang, 2009): regularized logistic regression Wrapper
(Zhao et al., 2013): kernelized PLS Embedded
(Kim et al., 2007): canonical correlation analysis Embedded /

Feature transform
(Eliseyev et al., 2011): iterative multi-way PLS Embedded /

Feature transform
(Eliseyev & Aksenova, 2016): multi-way PLS with additional regular-
ization

Embedded /
Feature transform

(a) (b)

Figure 1: (a) Extracts (350–370s) from voltage and wrist position time series for monkey A. (b) 3D wrist
trajectory for the same extract.
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channel n, n = 1, . . . , Nch. Extracts from raw ECoG series and target time series are
shown in Fig. 1. Fig. 2 illustrates the process of feature extraction. The procedure of
feature extraction s(t)→ Xm will be described in more detail later (see Section 4).

The problem is to reconstruct the hand trajectory Y given Xm, m = 1, . . .M . The
reconstructed trajectory Ŷ approximates Y with a linear combination of features:

ŷm = vec
(
Xm

)T
ŵ, (2)

where vec
(
Xm

)
∈ RT ·F ·Nch is the result of vectorizing Xm, and the weight vector ŵ ∈ RT ·F ·Nch

minimizes the squared sum of residues:

ŵ = arg min
w

‖Ŷ −Y‖22. (3)

Feature selection. Due to the fact that ECoG measurements are correlated in temporal,
spatial and spectral domains, linear regression (2) will produce unstable results. To de-
crease computational cost of the problem (3) and increase robustness of the model we apply
feature selection to D.

Let χijk ∈ RM , (i, j, k) ∈ {1, . . . , T}×{1, . . . , F}×{1, . . . , Nch} comprise the values of
(i, j, k)−th feature for all M observations in the data sample. Let X ∈ RM×T ·F ·Nch denote
the result of flattening feature matrix D ∈ RT×F×Nch×M :

X = [vec(X1)
T, . . . , vec(XM)T]T = [. . . ,χijk, . . . ]. (4)

Define an indicator variable A ∈ RT×F×Nch which encodes inclusions of features χijk into
the dataset. The corresponding two-way feature matrix is

XA = [. . . ,χijk, . . . ], such that aijn = 1.

Feature selection problem formulates as follows:

A = arg min
A∈RT×F×Nch

L (XAwA,Y) .

Here L(Ŷ,Y) is some loss function and wA minimizes quadratic loss (3) for XA.

Quality criteria. To evaluate forecasting quality, we used several criteria:

• Correlation coefficient between predictions Ŷ and the original data Y:

corr(Ŷ,Y) =
1

M

M∑
m=1

cov(ŷm,ym)√
cov(ŷm, ŷm)cov(ym,ym)

. (5)

• Scaled MSE

sMSE(Ŷ,Y) =

∑M
m=1 ‖ŷm − ym‖2∑M
m=1 ‖ȳ − ym‖2

, ȳ =
1

M

M∑
m=1

ym. (6)
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Figure 2: Example of feature construction procedure. For each electrode a one-second long historical
interval [tm−∆t, tm] undergoes wavelet transformation (14) and thus obtains feature description in spectral-
temporal domain. Merging spectral-temporal feature matrices for all electrodes, one obtains 3D feature
description Xm for the time point tm.

3. Quadratic Programming Feature Selection

We consider a filtering feature selection approach, proposed in (Katrutsa & Strijov,
2017). Filtering approaches assign individual scores to each variable and select features
according to the assigned scores. This does not require model training. Thus, filtering
methods are generally more fast than embedded or wrapper methods. However, since filter-
ing methods do not consider relationships between variables, they tend to select correlated
features. The advantage of quadratic programming feature selection (QPFS) approach,
proposed in (Katrutsa & Strijov, 2017) is that it considers both relevance for prediction
and similarity between features. The rest of this Section is outlined as follows. We first
explain the original QPFS method, which we refer to as unfolded QPFS. Then we present
the proposed multi-way formulation of QPFS. Table 3 summarises notation for multi-way
and unfolded feature selection.

3.1. Unfolded QPFS
In case of flat feature description, QPFS problem is formulated as a quadratic program

a = arg min
a∈{0,1}N

(aTQa− bTa) , (7)
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Table 2: Notation for multi-way arithmetics.

A ∈ Rm×n (two-way) matrix
a ∈ Rm column vector
A ∈ Rn1×···×nd d-way matrix
a ◦ b ∈ Rn1×n2 outer product of a ∈ Rn1 and b ∈ Rn2 : [a ◦ b]ij = aibj
A×1 B ∈ Rm×n2×n3 inner product of multi-way matrix A ∈ Rn1×n2×n3 to matrix B ∈

Rm×n1 :
[A×1 B]ijk =

∑
i′ ai′jkbii′

A ∗B ∈ Rn1×n2×n3 element-wise product of multi-way A ∈ Rn1×n2×n3 and B ∈
Rn1×n2×n3 :
[A ∗B]ijk = aijkbikj

where (i, j)−th entry qij of matrix Q ∈ RN×N quantifies similarity between i-th and j-th
features. We use pairwise correlation coefficient to measure similarity between features:

qij = |corr(χi,χj). (8)

Similarly, we measure relevance bi of the i−th feature as its correlation with the target Y:

bi =
1

3

3∑
n=1

|corr(χi,yn)|, (9)

where yn are columns of the target matrix Y. The paper (Katrutsa & Strijov, 2017)
considers other ways to define Q and b, such as mutual information and normalized feature
significance as similarity and relevance measures.

The problem (7) balances between increasing diversity of the selected features and
maximizing their predictive power. This is done through optimization by a binary vector
a ∈ RN , which defines the active set of predictors:

X = [χi1 , . . . ,χin ], where aik = 1, k = 1, . . . , n.

3.2. Multi-way QPFS
One way to address feature selection in multi-way case is to flatten the features D by

vectorizing (4) each three-way2 matrix Xm and then proceed with the original QPFS (7).
The weak point of such approach is computing similarity matrix Q ∈ Rn1n2n2×n1n2n3 . Since
X contains multiple correlated features, Q becomes closer to singular as the number of
features grows, even though it is positive-definite by definition (8). The construction of the
optimization problem becomes the most difficult part of QPFS. To overcome this problem,

2We formulate multi-way QPFS for the case of four-way data D ∈ RM×n1×n2×n3 d = 3 (three-way
features), but all the derivations generalize to any number of modes Xm ∈ Rn1×···×nd , d ≥ 2.
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Table 3: Correspondence between flat (two-way) and multi-way feature descriptions.

Flat case Multiindex case
Design matrix X ∈ RM×n D ∈ RM×n1×n2×n3

Vector of feature val-
ues

χi ∈ Rn X(:,i1,i2,i3)
∈ Rn1n2n3

Indicator variables a ∈ Rn A ∈ Rn1×n2×n3

Similarity Q ∈ Rn×n Q1 ∈ Rn1×n1 , Q2 ∈ Rn2×n2 , Q3 ∈
Rn3×n3

Relevance b ∈ Rn B ∈ Rn1×n2×n3

we incorporate the multi-way structure of ECoG features Xm into feature selection problem
and propose a multi-way formulation of QPFS. More specifically, we assign one similarity
matrix for each mode: Q1 ∈ Rn1×n1 , Q2 ∈ Rn2×n2 , Q3 ∈ Rn3×n3 . The relevance matrix is
the same size as Xm ∈ Rn1×n2×n3 .

To proceed further, we need to introduce notation for multi-way arithmetics.

• Let a ◦ b denote the outer product of two vectors a ∈ Rn1 ,b ∈ Rn2

a ◦ b ∈ Rn1×n2 : [a ◦ b]ij = aibj, a ∈ Rn1 ,b ∈ Rn2 .

• Let A×dB denote the d-mode product of multi-way matrix A ∈ Rn1×n2×n3 to matrix
B ∈ Rm×n1

A×1 B ∈ Rm×n2×n3 : [A×1 B]ijk =
∑
i′

ai′jkbii′ .

• Let A ∗B denote the element-wise product:

[A ∗B]ijk = aijkbikj.

Suppose the similarity matrices Q1 ∈ Rn1×n1 , Q2 ∈ Rn2×n2 , Q3 ∈ Rn3×n3 for each mode
of X and a multi-way relevance matrix B are known. The problem (7) reformulates as
follows:

A = arg min
A∈{0,1}n1×n2×n3

(
3∑
d=1

(A×1 Qd) ∗A−B ∗A

)
×11n1×21n2 ×31n3 . (10)

where operation A×11n1×21n2 ×31n3 is equivalent to summation over all entries of A:

A×11n1×21n2 ×31n3 =

n1∑
i=1

n3∑
j=1

n3∑
k=1

aijk.

Solution of (10) is based on low rank decomposition of A.

A =
R∑
r=1

a
(r)
1 ◦ a

(r)
2 ◦ a

(r)
3 , a

(r)
1 ∈ Rn1 , a

(r)
2 ∈ Rn2 , a

(r)
3 ∈ Rn3 , (11)
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This decomposition allows to solve the problem (10) via alternate approach, so that at each
step a quadratic program is solved. The derivation and exact formulation of the proposed
multi-way QPFS algorithm can be found in AppendixA.

Similarity and relevance for multi-way data. To define d-mode similarity matrix Qd, d = 1, 2, 3
we use higher-order SVD decomposition:

X =
R∑
r=1

λr · u(r)
0 ◦ u

(r)
1 ◦ u

(r)
2 ◦ u

(r)
3 .

The d-mode similarities Qd are computed as

Qd =
1

R− 1
UdΣUT

d , where Σ = diag(λ1, . . . , λR),

Ud = [u
(1)
d , . . . ,u

(R)
d ] ∈ Rnd×R, d = 1, 2, 3.

The relevance definition (9) generalizes straightforwardly to the three-way case:

B = [bijk], bijk =
1

3

3∑
n=1

|corr(χijk,yn)|.

Linear relaxation of (10). The problem (10) is the integer optimization problem, which
is not convex. To allow for more efficient solution, we have to relax non-convex problem
constraint A ∈ {0, 1}n1×n2×n3 into Â ∈ [0, 1]n1×n2×n3 . After the suboptimal solution Â of
the relaxed problem is found, we threshold Â to {0, 1} values and obtain

A(ε) = [aijk], aijk =

{
1 if âijk ≥ ε,

otherwise
(12)

Thresholded solution A(ε) defines an active set of features XA. Setting various threshold
values ε, we obtain various active sets of features XA(ε). Solution Â of relaxed QPFS
defines order on the feature set

χijk � χi′j′k′ ⇔ âijk ≤ âi′j′k′ . (13)

Complexity. Solving a convex quadratic program (7) takes polynomial time in n1 · n2 ·
n3. To formulate the problem, one needs to compute (n1 · n2 · n3)

2 entries qij of Q,
which might become prohibitive. In the proposed algorithm, one makes several iteration,
at each iteration solving three convex quadratic programs (A.3). Each problem requires
computation of n2

d values, which is way less than (n1 ·n2 ·n3)
2. Solving each problem takes

polynomial time in nd ·R. Here R is bounded by the number of desired sparse feature set:
nd ·R ≤ n2

d. Even multiplied by a number of iterations, O ((n2
1)
p1)+O ((n2

2)
p2)+O ((n2

3)
p3)

is still asymptotically less than O ((n1 · n2 · n3)
p). In practice, we found that using only

one iteration was usually enough.
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(a) A (b) K1

Figure 3: Optimal latency values for monkeys A (32 electrodes) and K1 (64 electrodes). Each circle
corresponds to one electrode. Positions of the circles roughly describe electrode placements.

4. Experiments

Feature extraction for ECoG data. We used NeuroTycho foodtracking dataset (Shimoda
et al., 2012) for evaluation. ECoG signals and wrist positions were measured simultane-
ously. The dataset includes observations for two monkeys, A (Nch = 32) and K ( Nch = 64)
across several dates. The voltage time series s(t) were sampled at 1000Hz, wrist positions
were sampled at 120Hz.

To test the proposed methods, we use feature extraction methods for ECoG-based
classification and prediction of intended movements, most often reported successful in
literature (Kubánek et al., 2009; Bougrain & Liang, 2009; Bundy et al., 2016). The feature
description includes frequency- and time-domain features. Frequency-domain features are
obtained with spectral transform. These features represent time-dependent contributions
of a range of frequencies into the signal.We use wavelet transform to obtain spectro-tem-
poral features. A comparison (Lotric et al., 2000)of spectral analysis methods showed that
wavelet transforms provide better frequency resolution than Short Time Fourier transform
or autoregressive analysis. We used Morlet wavelet as mother wavelet, since it is commonly
used in BCI data analysis (Chao et al., 2010; Eliseyev & Aksenova, 2016; ?). The time-
domain features, referred to as local motor potentials (Kubánek et al., 2009), are essentially
low-passed ECoG time series s(t). Both temporal and spectral features are time delayed.

Time-domain features. The optimal latency is chosen to maximize absolute linear cross-
correlation between ECoG s(t+ τ) and target y(t) time series. As demonstrated by Fig. 3,
the optimal latency τ ∗ might take both negative and positive values. Positive τ ∗ indicates
that activity sn that is most useful for prediction of the current position y(t) is detected
after that position was passed, which means that predictors based on such features are not
causal.
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Figure 4: Segment of the forecasted time series. Linear regression, 50 best features according to multi-way
QPFS.

Optimal latency τ ∗ values depend on the electrode position and the spatial pattern of
this dependency varies between x, y, z dimensions of target time series.

Frequency-domain features. The feature matrix Xm comprises spatial, temporal and spec-
tral information about the time series s(t) across the time period [tm − ∆, tm]. Fig. 2
illustrates the process of feature extraction. The spatial component is represented by Nch

electrodes. Each ECoG time series sn(t), n = 1, . . . , Nch is transformed into frequency
domain with wavelet transform. Here we use continuous wavelet transform with Morlet
as mother wavelet. To obtain T × F features in time-frequency domain, use the following
procedure. Select F basic frequencies (scales) fj, j = 1, . . . , F and apply Morlet wavelet
transform to all sn(t), n = 1, . . . , Nch at each center t1 ≤ ti ≤ tM and scale fj, j = 1, . . . , F :

Wijn =
1√
|fj|

∑
t≤tM

ψ

(
t− ti
fj

)
sn(t). (14)

In the computation experiments we used two feature extraction strategies, labeled 2D
and 3D.

1. The 2D dataset includes the time-delayed (τ = 0.65s) ECoG time series and wavelet
coefficients:

Xm ∈ RF×Nch , Xmjn =

{
sn(tm + τ), j = 1,

Wmjn for j = 2, . . . , F + 1,
n = 1, . . . , Nch. (15)
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(a) (b)

Figure 5: Forecasting quality by model complexity. Features are added by one in order (13) defined by
QPFS. The quality is measured as (a) the correlation coefficient and (b) scaled MSE between the predicted
and the true wrist trajectory.

Figure 6: Values of loss function of unfolded QPFS against values loss function for multi-way QPFS.
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(a) (b) (c)

(d) (e) (f)

Figure 7: (a) Complexity by the threshold value ε. Each line corresponds to a cross-validation split. (b)
Evaluation of electrode-frequency pairs importance. Importance is measured as feature rank (13), averaged
over cross-validation splits. (c) Electrode ranks, averaged over frequencies.
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The time series were downsampled the data by the factor of 10. To create the dataset
we used the time step δt = 0.05s. We considered several frequency bands: 0.5–8Hz
with 0.5Hz step, 9–18Hz with 3Hz and 20-45 with 5Hz step.

2. The 3D dataset contains three-way features with no time delay. 3D features explicitly
include local history ∆m = [tm − ∆t, tm] of wavelet coefficients. To construct 3D
dataset for t1, . . . , tM , select a finer grid of ti, such that |ti ∈ ∆m| ≥ T , where T
is the selected parameter, which controls how coarse is the summary of ∆m. Split
the time range ∆m into T consecutive intervals δti, i = 1, . . . , T . For n-th electrode
in 1, . . . , N the (i, j, n)-th element of three-way matrix Xm ∈ RT×F×Nch is given by
averaging Wi′jn over δti:

Xmijn =
1

|δti|
∑

i′: ti′∈δti

Wi′jn. (16)

Scalogram features were computed without downsampling with the following param-
eters: duration of local history time segment ∆t = 1s with step δt = 0.05s, T = 20,
F = 20. The frequencies were chosen logarithmically spaced in the range 10 – 500
Hz.

QPFS results. In this section we compare performance of original QPFS and multi-way
QPFS3. Fig. 7 summarizes results of multi-way QPFS, applied to the 2D feature set (15).
To evaluate performance of the QPFS algorithm, we split the part of the dataset, corre-
spondent to a time range from 5 to 645 seconds, into K = 5 folds to form a training set
from four folds and a test set from one fold left. Each fold was used as test set once. The
rest of the data (from 646 to 950) was used as a hold-out set.

The relaxed feature selection problem (10) was solved for each training set. The result-
ing structure variable defined ranking of features (13). We say that the feature is ranked
n−th, if it is worse than exactly n − 1 features. Since higher ranked features are more
likely to be included into the model, we measured feature utility as its rank, averaged over
cross-validation splits.

To obtain an active feature set XA(ε) we thresholded Â against some ε ∈ [0, 1) value.
The quality of feature set A(ε) is evaluated as the forecasting quality (5) or (6) of linear
model (2), with parameters wA(ε) estimated at the training set.

Fig. 4, 5, and 7 exemplify QPFS results for 2D feature set. Fig. 4 demonstrates an
example of a forecast, obtained for wrist trajectory with 50 features. The features were
selected by multi-way QPFS from 2D feature set. As can be seen, the reconstructed
trajectory follows the peaks in the original trajectory. However, it is too jerky in the “still”
regions (450 ms and further), which may cause disturbances for the BCI user. Perhaps a
mixture model, which operates several different models (say, one for rigorous movement
and one for stillness) to obtain the final forecast, would do better in this case. We leave

3The code for computational experiments is available at https://github.com/Anastasia874/ECoGFeatureSelection
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Figure 8: Forecasting quality measures as correlation coefficient between the original wrist trajectory and
the reconstructed trajectory. (a) Unfolded QPFS. (b) Multi-way QPFS.

more complex modelling technique as well as postprocessing out of the scope of this paper,
since our goal is to propose a feature selection method.

Fig. 5 shows quality curves for unfolded and multi-way QPFS. Fig. 5(a) displays cor-
relation coefficient between predicted Ŷ and true Y wrist trajectories against complexity
N(ε) =

∑
i,j aij(ε) of the model. The test quality stops increasing at about 300 features;

hold-out quality stays approximately the same after about 100 features. Fig. 5(a) displays
scaled MSE of the predicted Ŷ trajectory against complexity.

Fig. 6 compares values of loss function of unfolded QPFS (7) and the corresponding
values of multi-way QPFS (10). Each point on the figure corresponds to a subset of features.
Feature sets were selected at random. Unfolded and multi-way loss functions demonstrate
strong positive correlation, which implies that minimizer of (10) should yield value of (7)
close to its minimum.

Fig. 7(a) shows how the complexity N depends on the threshold value ε for each split.
QPFS seems to partition the feature set into several groups with approximately the same
value of structure variable Â. Fig. 7(b) color-codes utility of each feature (electrode-
frequency pair). The first column of the color-coded matrix corresponds to decimated
ECoG time series. Fig. 7(c) shows color-coded utility of each electrode, averaged by fre-
quencies. The electrodes are positioned in accordance with the ECoG electrode placement
used in the experiments (monkey A). Though the forecasting results 5 produced by multi-
way and unfolded QPFS are quite similar, Fig. 7 demonstrates that multi-way and unfolded
QPFS tend to select different feature sets. Multi-way QPFS selects less diverse features,
since there it makes no explicit pairwise comparison.

In case of 3D feature set, the number of features becomes prohibitive for unfolded
QPFS. For these reason, all comparisons made in this paper, are based on 2D feature
set. We were able to use multi-way QPFS in case of 3D feature selection, but we had
to additionally split the data into batches. Fig. 8 shows how quality curves change their
shape from batch to batch.
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Comparison of QPFS and PLS. As a reference embedded algorithm we selected PLS regres-
sion, since it is reported successful in ECoG-based motion reconstruction. We compared
the proposed algorithm to unfolded PLS and NPLS, the way it was formulated in (Eliseyev
et al., 2011). Table 4 compares unfolded QPFS, multi-way QPFS (labeled NQPFS by anal-
ogy with NPLS), PLS and NPLS in terms of correlation coefficient (5). Each algorithm
was allowed to select N = 10, 25, 200 or 500 features (or components, in case of PLS and
NPLS). For QPFS and NQPFS we then estimated parameters of linear model (2) with
no additional regularization. In case of PLS and NPLS, parameters come as the part of
solution to the component construction problem. For each dataset (5 datasets for monkey
A and 3 datasets for monkey K) and each N the best result is given in bold.

Besides NeuroTycho dataset we considered gestures datasets from Stanford Digital
repository (?). The datasets contain electrocorticographic data and finger flexions for
finger movement prediction. Three datasets were considered:

• ‘base’: basic baseline fixation task,

• ‘fingerflex’: the subject move a certain finger upon a cue,

• ‘freeform’: self-paced movements in response.

Recordings for each subject lasted for about 2 minutes. The results are listed in the
tables 5, 6, 7. Due to relatively small sample size we used smaller number of selected
features for estimation.

In addition to previously mentioned correlation coefficient (5) and scaled MSE (6) we
used dynamic time warping (DTW) distance and mean absolute difference error (MADE)
between Ŷ and Y. DTW is used as distance measure when the compared sequences must
be aligned before comparison and represents the cost of best alignment. MADE measures
smoothness of the reconstructed trajectory as

MADE(Ŷ,Y) =

∑M
m=1 |ŷ′m − y′m|∑M
m=1 |ȳ′ − y′m|

.

This metric is important in trajectory reconstruction in the context of BCI design. Results
of comparison by all four metrics are summarised in Fig. 9. Fig. 9(a) displays average
values of these criteria for N = 10, 25, 50, 100, 200, 500. For each algorithm we calculated
how many times it placed first (rank one), second (rank two) and so on, and averaged their
rankings over 8 datasets. Fig. 9(b) reports average rankings of the algorithms. Here less
is better.

Finally, we assess how time-consuming are the compared algorithms (see Fig. 10). Since
PLS and NPLS simultaneously reduce dimensionality and train the model, we included
the time needed to train linear model (3) into the estimates for QPFS and NQPFS. We
considered D ∈ R5000×n×n for n ∈ {10, 25, 50}. Fig. 10(a) shows time estimates against the
number of selected features with no model training for QPFS and NQPFS. Since QPFS
and NQPFS rank all features simultaneously, there is no dependance on the number of
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Table 4: Correlation coefficient between predicted and true wrist trajectory.

Monkey, date Algorithm N = 10 N = 25 N = 200 N = 500

A, 20090116

QPFS 0.333± 0.007 0.34± 0.008 0.414± 0.041 0.505± 0.015
NQPFS 0.271± 0.028 0.307± 0.009 0.459± 0.014 0.511± 0.020
PLS 0.306± 0.007 0.376± 0.012 0.476± 0.017 0.51± 0.010
NPLS 0.0367± 0.006 0.125± 0.016 0.329± 0.021 0.358± 0.054

K, 20090525

QPFS 0.252± 0.079 0.288± 0.096 0.392± 0.144 0.467± 0.132
NQPFS 0.185± 0.040 0.225± 0.063 0.374± 0.119 0.416± 0.112
PLS 0.24± 0.042 0.288± 0.095 0.429± 0.128 0.409± 0.122
NPLS 0.0359± 0.026 0.115± 0.007 0.278± 0.092 0.336± 0.072

K, 20090527

QPFS 0.346± 0.020 0.391± 0.007 0.403± 0.007 0.441± 0.006
NQPFS 0.185± 0.012 0.191± 0.007 0.384± 0.006 0.413± 0.009
PLS 0.297± 0.010 0.347± 0.013 0.428± 0.018 0.417± 0.028
NPLS 0.118± 0.019 0.23± 0.016 0.354± 0.025 0.371± 0.018

K, 20090602

QPFS 0.357± 0.017 0.382± 0.014 0.424± 0.014 0.468± 0.010
NQPFS 0.29± 0.007 0.306± 0.003 0.381± 0.006 0.474± 0.017
PLS 0.341± 0.012 0.369± 0.010 0.442± 0.008 0.416± 0.015
NPLS 0.111± 0.009 0.167± 0.007 0.306± 0.012 0.344± 0.026

A, 20081127

QPFS 0.281± 0.014 0.323± 0.017 0.397± 0.028 0.438± 0.066
NQPFS 0.205± 0.008 0.227± 0.012 0.436± 0.012 0.451± 0.016
PLS 0.293± 0.016 0.353± 0.009 0.429± 0.020 0.434± 0.064
NPLS 0.0402± 0.012 0.0698± 0.002 0.2± 0.011 0.224± 0.025

A, 20081224

QPFS 0.262± 0.012 0.291± 0.035 0.332± 0.089 0.4± 0.079
NQPFS 0.196± 0.005 0.216± 0.003 0.298± 0.075 0.407± 0.086
PLS 0.276± 0.006 0.331± 0.010 0.349± 0.086 0.401± 0.090
NPLS 0.0894± 0.010 0.129± 0.008 0.169± 0.065 0.206± 0.082

A, 20090121

QPFS 0.222± 0.006 0.242± 0.011 0.344± 0.027 0.368± 0.026
NQPFS 0.18± 0.011 0.224± 0.011 0.362± 0.018 0.371± 0.036
PLS 0.248± 0.012 0.297± 0.016 0.341± 0.022 0.369± 0.029
NPLS 0.0262± 0.011 0.0641± 0.008 0.151± 0.014 0.172± 0.021

A, 20090611

QPFS 0.3± 0.017 0.321± 0.022 0.345± 0.011 0.357± 0.011
NQPFS 0.251± 0.005 0.256± 0.005 0.326± 0.004 0.355± 0.005
PLS 0.282± 0.010 0.321± 0.009 0.359± 0.008 0.357± 0.011
NPLS 0.108± 0.006 0.184± 0.007 0.27± 0.010 0.27± 0.008

Average

QPFS 0.294± 0.022 0.322± 0.026 0.381± 0.045 0.43± 0.043
NQPFS 0.22± 0.015 0.244± 0.014 0.377± 0.032 0.425± 0.038
PLS 0.285± 0.014 0.335± 0.022 0.407± 0.038 0.414± 0.046
NPLS 0.0705± 0.012 0.135± 0.009 0.257± 0.031 0.285± 0.038
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Table 5: Correlation coefficient for gestures ‘base’ dataset.

Subject Algorithm N = 10 N = 25 N = 50 N = 100

wm_base

QPFS 0.141± 0.058 0.0979± 0.067 0.0863± 0.064 0.0669± 0.075
NQPFS 0.23± 0.080 0.227± 0.087 0.204± 0.089 0.172± 0.084
PLS 0.109± 0.068 0.0911± 0.068 0.107± 0.061 0.0702± 0.068
NPLS 0.218± 0.103 0.212± 0.101 0.226± 0.113 0.231± 0.112

de_base

QPFS 0.336± 0.332 0.325± 0.306 0.343± 0.323 0.363± 0.310
NQPFS 0.293± 0.310 0.232± 0.299 0.212± 0.257 0.248± 0.342
PLS 0.118± 0.031 0.0453± 0.021 0.0383± 0.018 0.0978± 0.054
NPLS 0.102± 0.032 0.104± 0.047 0.0643± 0.042 0.0961± 0.120

bp_base

QPFS 0.354± 0.317 0.374± 0.310 0.35± 0.319 0.331± 0.286
NQPFS 0.369± 0.311 0.345± 0.335 0.233± 0.372 0.218± 0.377
PLS 0.128± 0.051 0.187± 0.043 0.258± 0.050 0.32± 0.031
NPLS 0.0422± 0.031 0.0983± 0.098 0.097± 0.118 0.101± 0.082

ca_base

QPFS 0.0235± 0.017 0.0282± 0.022 0.0486± 0.046 0.175± 0.088
NQPFS 0.186± 0.244 0.129± 0.111 0.264± 0.351 0.205± 0.224
PLS 0.0526± 0.032 0.0627± 0.022 0.0655± 0.070 0.0582± 0.026
NPLS 0.0836± 0.031 0.116± 0.036 0.135± 0.028 0.107± 0.054

cc_base

QPFS 0.259± 0.269 0.232± 0.211 0.189± 0.217 0.128± 0.234
NQPFS 0.267± 0.183 0.462± 0.138 0.423± 0.129 0.39± 0.102
PLS 0.0893± 0.058 0.057± 0.022 0.0482± 0.034 0.122± 0.037
NPLS 0.25± 0.111 0.315± 0.075 0.328± 0.097 0.312± 0.132

Table 6: Correlation coefficient for gestures ‘fingers’.

Subject Algorithm N = 10 N = 25 N = 50 N = 100

wm_fingerflex

QPFS 0.407± 0.029 0.392± 0.051 0.339± 0.154 0.36± 0.092
NQPFS 0.424± 0.009 0.388± 0.068 0.387± 0.068 0.404± 0.038
PLS 0.415± 0.019 0.488± 0.019 0.571± 0.016 0.582± 0.030
NPLS 0.395± 0.021 0.394± 0.017 0.401± 0.047 0.348± 0.111

bp_fingerflex

QPFS 0.235± 0.034 0.239± 0.027 0.242± 0.026 0.238± 0.021
NQPFS 0.0287± 0.020 0.0405± 0.019 0.0587± 0.015 0.0702± 0.018
PLS 0.237± 0.007 0.282± 0.006 0.318± 0.014 0.366± 0.013
NPLS 0.0632± 0.010 0.0329± 0.011 0.0452± 0.012 0.0811± 0.030

ca_fingerflex

QPFS 0.0811± 0.031 0.0457± 0.031 0.0883± 0.030 0.103± 0.045
NQPFS 0.0824± 0.020 0.08± 0.038 0.0796± 0.041 0.11± 0.017
PLS 0.263± 0.012 0.284± 0.020 0.284± 0.017 0.274± 0.014
NPLS 0.0963± 0.021 0.0128± 0.007 0.0225± 0.013 0.0202± 0.015
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Table 7: Correlation coefficient for gestures ‘freeform’ dataset.

Subject Algorithm N = 10 N = 25 N = 50 N = 100

wm_freeform

QPFS 0.0626± 0.032 0.108± 0.041 0.102± 0.032 0.121± 0.059
NQPFS 0.345± 0.032 0.302± 0.060 0.277± 0.032 0.314± 0.042
PLS 0.392± 0.196 0.333± 0.214 0.343± 0.189 0.406± 0.182
NPLS 0.323± 0.152 0.328± 0.199 0.409± 0.192 0.437± 0.210

de_freeform

QPFS 0.32± 0.149 0.339± 0.163 0.355± 0.159 0.366± 0.169
NQPFS 0.31± 0.059 0.286± 0.059 0.228± 0.118 0.204± 0.117
PLS 0.297± 0.040 0.333± 0.009 0.338± 0.025 0.4± 0.054
NPLS 0.243± 0.047 0.277± 0.034 0.308± 0.054 0.357± 0.059

bp_freeform

QPFS 0.179± 0.086 0.194± 0.086 0.127± 0.072 0.0352± 0.032
NQPFS 0.316± 0.032 0.368± 0.045 0.101± 0.108 0.061± 0.027
PLS 0.238± 0.044 0.274± 0.038 0.284± 0.051 0.269± 0.045
NPLS 0.0302± 0.022 0.0453± 0.020 0.0806± 0.031 0.0961± 0.028

ca_freeform

QPFS 0.13± 0.072 0.101± 0.029 0.108± 0.045 0.211± 0.175
NQPFS 0.252± 0.157 0.226± 0.172 0.185± 0.189 0.195± 0.183
PLS 0.153± 0.051 0.233± 0.052 0.183± 0.030 0.174± 0.055
NPLS 0.0724± 0.033 0.0686± 0.025 0.0843± 0.026 0.106± 0.130

cc_freeform

QPFS 0.182± 0.042 0.194± 0.021 0.236± 0.058 0.246± 0.016
NQPFS 0.28± 0.027 0.304± 0.038 0.316± 0.042 0.264± 0.111
PLS 0.155± 0.025 0.153± 0.013 0.202± 0.036 0.24± 0.047
NPLS 0.0415± 0.027 0.0403± 0.031 0.0478± 0.019 0.0503± 0.034

selected features. The most consuming part of QPFS computing n2× n2 similarity matrix
and verifying it is adequate for further computations. Since NQPFS operates only with
two n×n matrices it performs much better in terms of timing. Fig. 10(b) shows time taken
to select features and train the model. We see that QPFS and NQPFS still depend less on
the number of selected features than both versions of PLS. Also, is is seen that training
linear model with NQPFS is as efficient as training PLS regression model.

5. Conclusion

Decoding cortical activity of human brain is the central problem of neuroengineering.
We address the problem of 3D movement reconstruction from cortical activity. In order
to build a model that is both adequate and computationally simple, we propose a multi-
way formulation of the quadratic programming feature selection approach. QPFS is a
flexible and efficient approach, which allows to select most relevant features from a highly
correlated set. Our modification is designed for multi-way structured data. We exploit the
data structure to formulate a version of QPFS suitable even for high dimensions.

The proposed modification of QPFS is applied to the problem of hand trajectory predic-
tion. The quality of simple linear regression based on QPFS-selected features is comparable
with the quality PLS regression. We observed that multi-way QPFS produced similar re-
sults to those of QPFS in terms of regression quality and did it much more efficiently due
to exploitation of multi-way structure of the data.
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Figure 9: (a) Average values of all quality criteria for the compared algorithms. (b) Average rankings of
the compared algorithms (the less – the better).
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Figure 10: (a) Algorithm timings, QPFS and NQPFS measured without model training. (b) Algorithm
timings with model training.
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The proposed method can be used to construct predictive models in Brain-Computer
Interface design. We believe that our optimization-based feature selection algorithm will be
able to provide efficient solution for feature selection problem in other multi-way settings.

The weaknesses of the proposed method are those of filtering methods. In terms of
regression quality wrapper and embedded methods might provide more accurate results,
since these methods incorporate feature selection into the fitting process. Also, compared
to the original QPFS, the proposed approach tends to select less diverse feature sets,
since no pair of features is compared explicitly. To increase diversity one has to introduce
additional constant factor to the problem (7) to better leverage between the summands.

The strengths of the proposed approach are the following:

• As a filtering method, the proposed approach selects a sparse subset of relevant
features. The results of feature selection are independent of the regression model and
apply universally. Unlike wrapper or embedded methods of feature selection, the
proposed method produces interpretable results. Since there is no interference from
the regression model, the results of feature selection can be used for domain analysis.

• The proposed method preserves multi-way data structure, which is advantageous
in two ways. Firstly, it considers correlations between all modes, contrarily to the
unfolded method. Secondly, it allows a more efficient formulation of the optimization
problem.

The proposed modification of QPFS is applied to the problem of hand trajectory predic-
tion. The quality of simple linear regression based on QPFS-selected features is comparable
with the quality PLS regression. We observed that multi-way QPFS produced similar re-
sults to those of QPFS in terms of regression quality and did it much more efficiently due
to exploitation of multi-way structure of the data.

The proposed method can be used to construct predictive models in Brain-Computer
Interface design. We believe that our optimization-based feature selection algorithm will be
able to provide efficient solution for feature selection problem in other multi-way settings.

Future research. In the course of BCI design, ECoG analysis and motor imagery recon-
struction, a promising direction for future research is automatic feature generation. In this
paper we have adopted the traditional approach to brain signal analysis based on spectral
transforms. However, many powerful algorithms (Bengio et al., 2012) were proven able to
compete with feature extraction based on expert knowledge. Convolution neural networks
were shown (Lawhern et al., 2018; Walker & Deisenroth, 2015) as accurate as conventional
algorithm based on spectral features. Automatic feature extraction may result in new,
more powerful features. In our opinion, it is important to explore the potential ways of
ECoG-based movement prediction beyond scalograms.

Another research direction that seems promising is associated with the following hy-
pothesis. We assume that the way spatial pattern of neural activations changes during the
movement describes the movement. Distinguishing these spatial-temporal patterns should
help in predicting the movement more accurately.
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For the proposed algorithm it may be useful to investigate other methods of measuring
multi-way similarity between features. As for multi-way feature selection in general, an
interesting research direction is to develop an algorithm for simultaneous object and feature
selection in the style of CUR-decomposition (Mahoney et al., 2008). Model-free selection
of most representative objects might also provide useful insight into the problem domain
and help reduce costs for further data representation.
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AppendixA. Derivation of multi-way QPFS

To obtain the alternate solution we exploit the fact that the matrix A is binary. Thus
an exact low-rank decomposition

A =
R∑
r=1

a
(r)
1 ◦ a

(r)
2 ◦ a

(r)
3 , a

(r)
1 ∈ Rn1 , a

(r)
2 ∈ Rn2 , a

(r)
3 ∈ Rn3 (A.1)

exists for some R. This allows to rewrite the loss function from (10) as
R∑
r=1

‖a(r)
2 ‖22 · ‖a

(r)
3 ‖22 · a

(r)T
1 Q1a

(r)
1 + ‖a(r)

1 ‖22 · ‖a
(r)
3 ‖22 · a

(r)T
2 Q2a

(r)
2 + (A.2)

‖a(r)
1 ‖22 · ‖a

(r)
2 ‖22 · a

(r)T
3 Q3a

(r)
3 −B×1 a

(r)
1 ×2 a

(r)
2 ×3 a

(r)
3 .

This problem solves iteratively, via alternate approach. At each step a quadratic program
is solved. Let αi = [a

(1)T
i , . . . , a

(R)T
i ]T ∈ RnR for i = 1, 2, 3 and α(0) = 1niR be the initial

approximation of αi.
1. Solve the following problem with respect to α1 with α(k−1)

2 , α(k−1)
3 fixed:

α
(k)
1 = arg min

α∈{0,1}nR

αT
1

(
Q̃

(k−1)
1 α1 + Ĩ

(k−1)
1

)
+ B̃

(k−1)
1 α1, (A.3)

where Q̃
(k)
1 and Ĩ

(k−1)
1 are block-diagonal with r−th blocks Q̃

(k,r)
1 and Ĩ

(k−1)
1 :

Q̃
(k,r)
1 = ‖a(k,r)

2 ‖22 · ‖a
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3 ‖22Q1,
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2 Q2a
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3 Q3a
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3

)
In1 ,

and
B̃

(k)
1 = [B̃(k,1)T, . . . , B̃(k,R)T]T, B̃(k,r) = B×2 a

(k,r)
2 ×3 a

(k,r)
3 .

2. Fix α(k)
1 , α(k−1)

3 , recompute Q̃
(k)
2 and B̃

(k)
2 and obtain α(k)

2 .
3. Fix α(k)

1 , α(k)
2 , recompute Q̃

(k)
3 and B̃

(k)
3 and obtain α(k)

3 .

The steps 1–3 repeat K times, which is, along with R, the parameter of multi-way QPFS.
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