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Extracting fundamental periods to segment
biomedical signals

Anastasia Motrenko, Vadim Strijov,

Abstract—We address the problem of segmenting nearly pe-
riodic time series into period-like segments. We introduce a
definition of nearly periodic time series via triplets (basic shape,
shape transformation, time scaling) that covers a wide range
of time series. To split the time series into periods we select a
pair of principal components of the Hankel matrix. We then
cut the trajectory of the selected principal components by its
symmetry axis, thus obtaining half-periods that are merged into
segments. We describe a method of automatic selection of periodic
pairs of principal components, corresponding to the fundamental
periodicity.

We demonstrate the application of the proposed method to
the problem of period extraction for accelerometric time series
of human gait. We see the automatic segmentation into periods
as a problem of major importance for human activity recognition
problem, since it allows to obtain interpretable segments: each
extracted period can be seen as an ultimate entity of gait.

The method we propose is more general compared to the
application specific methods and can be used for any nearly
periodical time series. We compare its performance to classical
mathematical methods of period extraction and find that it is not
only comparable to the alternatives, but in some cases performs
better.

Index Terms—sensor signal processing, nearly periodic time
series, time series segmentation, period extraction, principal
components analysis.

I. INTRODUCTION

ECENT advances in wireless technologies make it pos-

sible to obtain significant amounts of human-driven data
with the help of various wearable devices by forming sensor
networks to monitor patient’s state at any time. The analysis of
sensor networks data allows to solve problems involved in such
health applications as analysis of human behavior and social
interactions [1], [2], emotion recognition [3] recognition of
depressive and manic states and detect state changes of patients
suffering from bipolar disorder [4], automated fall detection
for elderly people [S] and others [6], [7]. Dealing with human-
driven data, one frequently encounters nearly periodic signals,
for example when analysing brain’s electrical activity [8],
pulse wave, heartbeat [9], breathing rate [10] or basic types of
human gait [11]. The problem of partitioning a nearly periodic
time series into period-like segments is an important part of
biosignal analysis and can be used in many biomedical and
health applications.
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The method we propose is applicable to any nearly periodic
time series, which enables automatic interpretable segmenta-
tion of various biosignals. We see the problem of interpretable
segmentation as a step of hierarchical analysis of complex
sequences of variously structured time series. In case of
accelerometry data [12], the lowest levels of this hierarchy
correspond to segments of time series, followed by time series
of particular activity types and the highest levels describe
sequences of activities. The proposed method of period ex-
traction of human gait time series provides interpretability of
time series segmentation and is, therefore, an important step
in understanding and modelling human.

There have been developed plenty of highly accurate meth-
ods of period extraction, which rely on application specific
information, such as the expected form of a signal or aver-
age frequency range. Such ad hoc methods are specifically
designed to recognize certain types of events, such as the
acceleration peaks at heel landing and take-off in step detection
in case of gait segmentation. Performance of these methods
depends on a range of parameters that require accurate tuning.
This, on one hand, might be the strength of ad hoc methods
which ensures their accuracy (provided this tuning is feasible),
but might turn out as their deficiency when such tuning can
be afforded. For such cases we develop a method of period
segmentation that depends on minimum set of parameters and
requires no additional information on the expected shape of
periods or nature of the data. Since biomedical signals may
vary with respect to the person’s physical abilities are gen-
erally characterised with irregularities in periodicity and time
scales [13], the method of period extraction that is independent
of signal shape or nature of the data would contribute to the
fields of signal analysis and pattern recognition as well as their
biomedical applications.

II. RELATED WORK

The basic methods of evaluating frequency of time series
rely on approximating the time series with a sine model using
least square estimation [14]. An asymptotically equivalent
method is the maximization of the periodogram [15] of the
time series. Though the estimates obtained through these meth-
ods converge to the true value of frequency for strictly periodic
time series, these methods are generally not applicable for
time series of non-stationary periodicity. However, one more
often encounters the time series which, though not strictly
periodic, demonstrate behavior similar to periodic. Such time
series in various studies can be referred to as quasi-periodic or
nearly periodic. We chose the term “nearly periodic” as less
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ambiguous. A formalization of this term will be given in the
next Section.

Methods of estimating instantaneous frequency of a quasi-
periodic signals are listed, for example, in [16] and include
phase differencing, least square phase estimation, discrete-
time Hilbert transform and others. For example, the authors
of [17] estimate the fundamental (i.e., the lowest frequency)
as a fixed point of a mapping based on Short Time Fourier
Transform, minimizing the self-introduced Carrier-to-noise ra-
tio. The paper [16] extends the existing methods for evaluating
the instantaneous frequency of continuous signals for the case
of discrete time series.

Another important class of period extraction methods stems
from the ad hoc methods. Using specific information related to
the nature and physical properties of the measured signal helps
to enhance the results of period extraction. For example, the
methods that aim to detect walking steps with accelerometer-
based time series usually are designed to detect peaks in accel-
eration associated with heel strike or other phase of walking
gait [18], [19]. The algorithms tested in the papers [18], [19]
are derived from threshold methods when the step is count
every time the amplitude of the signal exceeds a predefined or
adaptive threshold [20]. The common methods also regarded
in this papers include looking for a given pattern in a signal,
window processing, transforming the signal into frequency do-
main [21], [22] and clustering the time- and frequency-domain
features. More information on time- and frequency-domain
features used in human motion analysis can be found in [23].
Though the paper [23] addresses the problem of classifying
activities instead of segmenting one type of gait into cycle,
the features that are used for solving this classification are
good examples of application specific information about the
processed data. These methods rely on a form of the signal
and are based on detecting the peaks in acceleration. We aim
to design a more general approach to the problem of extracting
periods from the time series. To solve this problem, we exploit
the singular value decomposition of time series. We construct
the trajectory matrix of the studied time series, and compute its
principal components. We describe a procedure of selecting a
pair of principal components corresponding to the fundamental
periodic. The ending points of the periods are defined through
cutting the trajectory of the selected pair with its symmetry
axis. In this paper the period extraction problem is closely
connected to the interpretability of the segments. We define
our purpose as partitioning nearly periodic biosignals into the
segments that would be interpretable in a sense of nature of
the signal.

III. PROBLEM STATEMENT

Let us explain the idea of nearly periodic time series on
example of time series of human gait, such as walking, running
or leaping. We suppose that each studied time series of human
gait comprises a fundamental period, connected with the cycle
of gait. During the cycle of normal human gait, each lower
limb goes through a stance phase and a swing phase and
then returns to the stance phase [24], [25]. We define the
Sfundamental period of human gait as a segment of the time
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Fig. 1. The figure explains the notions of ground-truth segmentation points
iy € Ig and the set Zs of extracted segmentation points i;. In the subfigure
(a) manually segmented time series are plotted; vertical lines divide the time
range into periods. Blue line stands for a., red and green — for ay and a..
In the subfigure (b) the segmentation results are plotted. Red points mark the
limits of the extracted segments. The figure demonstrates the inconvenience
of using tri-axal accelerometer data: the periods extracted along different
dimensions have to be compromised.

series, measured between two consequential moments of time
when a person’s body takes the same pose. The sequence of
times series points, measured with accelerometer during one
gait cycle is repeated as a human walks on. The time scale of
the cycle and the exact values of the acceleration may change,
but some characteristic shape of a cycle stays unchanged. For
example, each cycle of time series of vertical component of
acceleration, measured as human walks, contains two maxi-
mums: the first one corresponding to the landing of the heel
and another one to pushing off the ground. The shape of period
may be exposed to transformations from cycle to cycle, but its
origin is the same. This property is what characterises nearly
periodic time series as we define them.

We formalize the idea of a nearly periodic time se-
ries as following. The nearly periodic time series X =
{z(1),...,2(i),...,2(m)} of length m is composed of a
number of repetitions of the same pattern, exposed to slight
shape changes and time scaling. Thus the nearly periodic
time series X is defined by the set (s,a(i,s), f(7)), where
vector s = [s1,...,s7|" defines the basic shape of a period,
the function a(i,s),7 € {1,...,m} modifies this shape and
the piecewise function f(i) — {1,...,T} performs the time
scaling. Then nearly periodic time series X can be expressed
as

.’E(l) = a(i,s{f(i)]). (1)

Function f has a finite number of subdomains such that f
is monotonically increasing from 1 to 7" on each subdomain.
The points 7§ = {if,...,05} = {if | fie + 1) < f(i)}
are considered the ending points of the periods. The set Z% is
expected as the result of the period extraction procedure.

In this paper we solve the problem of period extraction
of time series X = {x(¢)},, regarding a result of pe-
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riod extraction as a partition Zs = {i1,...,i5} of time
series X into sequence S = {Si,...,Sr} of segments
St = [z(it),...,x(itg1 — 1)]" corresponding to time-scaled
and transformed basic shape. Fig. 1 presents an example
of time series segmented into periods. The tree-dimensional
acceleration time series of human walking gait are plotted:
az in blue, a, in red and a, in green (Fig. 1(a)). This time
series were measured by a smartphone accelerometer and then
manually segmented into periods. The acceleration was mea-
sured at sampling rate of 40 points per second. The manually
extracted segmentation points i; € Zg are called ground-truth.
The ground-truth segmentation points are depicted on Fig. 1(a)
with vertical blue lines. Fig. 1(b) presents the same time series,
segmented automatically with the proposed method. The red
points mark extracted segmentation points iy € Zg. For our
purposes it is unimportant where to start measuring the cycle
of gait: when the heel was landing, or when it was taking off.
It is only necessary that the cycle of walking starts and end
with the same pose.

Throughout the paper we use the term segmentation refer-

ring to any procedure of partitioning time series into segments;
the proposed method is referred to as period extraction.
Similarly, the results of the segmentation in general are called
segments; the results of period extraction are called extracted
periods.
To evaluate the results of the period extraction proce-
dure, we use the technique proposed in [26]. The authors
of [26] propose to regard the results the segmentation prob-
lem as a two-class classification problem of the set of
points {z(1),...,z(m)}. Once the ground-truth set Z; =
{if,...,i%} of ending points of the segments is fixed, we
define the classes for x(i) as

1, if 1 € Zg,
x(i) € ne -8
0 otherwise.

Then the results of the segmentation can be assessed by
calculating the accuracy of the classification problem, with
some corrections. Depending on the sampling rate one might
allow small deviations of the obtained ending points i; € Zs
from the ground-truth segmentation Z3. This means that if the
segmentation point from Zg is close enough to some ground-
truth point 4§ say, |i; — i, | < €, and no other points from Zs
are in the e-neighbourhood of i}, the e-neighbourhood of 7} is
said to consist of true negatives and one true positive. If ¢ > 1
points from Zs are found in (i} —e€,...,4},...,if + ¢€), then
q — 1 of them are considered false positives. Alternatively,
if ¢ = 0, then x(i}) is counted as false negative. Since the
sample for such problem obviously has more negatives than
positives, the number of true negatives is not very informative
and the adjusted coefficients are recommended in this case. In
this paper we use Fj-score to estimate the quality of period

extraction.
2T P

T 2TP+FN + FP’
Here TP, TN, FP and F'N denote the number of true

positives, true negatives, false positives and false negatives
respectively. The coefficient ranges from zero to one. The

Fy 2

adequate segmentation results yield the values of F} close to
one.

IV. PERIOD EXTRACTION USING PRINCIPAL COMPONENTS

In this section we describe the proposed method of period
extraction.

A. Decomposing the time series with principal components
analysis (PCA)

Let the time series X be a decomposition
X=X+X+e, 3)

where X is the trend, X is the periodic time series or a sum
of periodic time series, and € is the noise. Each constituent of
the decomposition (3) can be approximated with a high level
of accuracy [27] with a combination of principal components
of trajectory matrix H

() o) o) '
- :v(: ) :v(. ) a( .+ )
x(m —IN +1) z(m —IN +2) x(m)

of the centered time series X
1 m
x(1) H:U(i)—%zlxi, i=1,...,m
i

The parameter N, which determines the longest periodicity
captured by PCA, is called window length. The method cap-
tures periodicity with period length 7' most accurately when
N is multiple of 7. Matrix H can be used to reconstruct
the original time series X or its constituents trough anti-
diagonal averaging. For example, to find an approximation
of X compute the singular value decomposition of covariance
matrix of H

1
FHH= VAV, A =diag(h,..., \y) 4)

and find principal components y; = Hv;, respective to
positive eigenvalues of H'H. Each principal component y;
may be used to reconstruct a part of the trajectory matrix H:

H:H1+"'+Hd, Hj:\/)\jij}.

To approximate X , select several components y; to compose
matrix H and reconstruct the constituent X of the original
time series X via diagonal averaging of H. This is the way
to extract a periodic constituent. The problems is to select
the principal components for H. The following theorem states
that a wide range of nearly periodic time series have two
corresponding principal components with consequent numbers
jand 5+ 1.

Theorem 1. For time series

X ={z(1),...,2(),...2(m)}

of the form
z(i) = A; cos(2mwi + @) )
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with w € (0,1/2), ¢ € [0,27), m - w € N and A;
3C € R|A;| < CVi the principal components y1 and yo can
be expressed as

y1(1) = B1(1) cos(2mwl + ¢1),
y2(1) = Ba(l) cos(2mwl + ¢2),

1, p2 €10,27), I=1,....m—N+1

and the difference |¢1 — ¢o| — /2.

The proof of this theorem can be found in the Appendix.

This result shows that each periodic constituent with 7" > 2
(w < 1/2) can be approximated with two principal compo-
nents: the sine and cosine functions with the same frequency
as the attached periodic. It is also shown in the Appendix
that such principal components have asymptotically equal
eigenvalues. This fact allows to consider only consequential
pairs of principal components (y;, y;+1) in the procedure
of automatical principal components selection, described in
the Section “Automatical selection of a pair of principal
components”.

For the purpose of the period extraction we won’t need to

reconstruct the periodic constituent itself, it will be enough to
select the pair of principal components y; and y;4; corre-
sponding to the fundamental period and observe the trajectory
(Yj» ¥i+1)-
We explain the procedure of selecting the optimal pair of
principal components for period extraction in the Section
“Automatic selection of the fundamental pair of principal
components”.

Note that the conditions of the Theorem hold for any nearly
periodic time series with no time scaling. After time scaling
the Eq. (5) only approximately describes the time series and
the results of the Theorem are not necessarily valid. The
impact of time scaling on the results of period extraction may
vary.
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Fig. 2. An example of dissecting of a trajectory of a pair of principal
components of time series X to obtain half-periods. Subfigure (a) presents the
time series X and the extracted half-periods S;” = [z(i; ), . .., (i}, DT
and S_t+‘ = [x(zj’)7 s m(iygg = 1)]". Each separate set Zg and I; defines
a partition of time series into periods. Subfigure (b) presents the trajectory of
principal components dissected by an arbitrary axis. Red circles and red stars
denote clusters of points of a}gproximately equal phase angle. These points
form the segmentation sets Zg and Zg .

B. Dissection of the phase trajectory with its symmetry axis

Consider some strictly periodic time series X = {x(i),i =
1,...,m} of period T":

2(i+T) = x(i).

According to the results, presented above X has only two
principal components y;, yo with non-zero corresponding
eigenvalues A; # 0, Ay # 0: the sine and the cosine with the
same period equal to 7. The trajectory of normalized principal
components yj and y3

Y .
Yj: m—]\?+1 5 7.]:1a2
=1 le(l)

plotted against each other forms a spiral with fixed radius equal
to 1 and center at (0,0):

y1(l) = cos(2rwl + ¢),
ya (1) ~ sin(2rwl + ¢).

We will further suppose that principal components are nor-
malized.

One loop of the trajectory corresponds to a complete period
of the each principal component or, equivalently, a complete
period of initial time series, since their periods are equal.
Thus the points of time series X with the same coordinates
in (y1,y2) space correspond to the same phase angle.

To find the ending points of the periods we cut the trajectory
of a pair of principal components and cut it with a line
that crosses the coordinate center (yo = ky; or y; = 0).
Cutting the trajectory along this axis we obtain a partition
Is = {iy,if,...,ip,ij} of the time series into negative
Sy =lx(iy),...,z(ig, — D"

yo(i) — kyi(i) <0 forall i € {i;,... i —1}

(y1(i) <0 foralld e {i;,...,4,,, —1}),t <T/2

and positive half-periods S;" = [z(i}"), ...,z (i}, — 1)":
y2(i) — ky1 (i) > 0 forall i € {if,...,i/, —1}

(y1(i) >0 forall i€ {if,...,i},, —1}),t <T/2.

Assume i; < i, than i, = 4] — 1. Joining half-periods
S, and S;", we obtain segmentation Zs = {iy,...,iy} into
fundamental periods. Thus we obtain half-periods that will be
later merged into periods.

The Fig. 2 demonstrates an example of implementing this
procedure. Fig. 2 (a) represents nearly periodic time series
X defined by a set (s,a, f). The blue line correspond to
the processed time series. Red circles and stars correspond
to the extracted ends of half-periods: i;" and i, , respectively.
A pair (y;,y;+1) of optimally chosen (for now let us omit the
question of selecting a pair of components) principal compo-
nents for X is fixed. The trajectory of selected components is
plotted in Fig. 2, (b). Due to the application of time scaling f
and shape transformation a, lengths of periods vary over the
time. This change results in the trajectory of the normalized
components forming a two-dimensional spiral with slightly
varying radius (rather than a constant radius) with various
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number of time points per loop (instead of fixed number of
points equal to period length). Now the points from different
loops that correspond to the same phase angle form clusters
in (y;, ¥;+1) space, instead of having the same coordinates as
it was the case with strictly periodic time series. When we cut
the trajectory, plotted in blue, with a black axis the trajectory
splits into “above” and “below” parts, each formed by half-
loops, which correspond to half periods. Sets I; and Zg of
ending points of this half-loops are the candidates for Zs, each
leading to a distinct partition of time series into segments.
Fig. 2 (a) presents both options of period extraction with
ending points marked as red circles for I; and red stars for
1 . The difference between these partitions lies in the variance
of phase angle for sets {x(i;")} and {z(i; )}: since the time
series are not strictly periodic, the points z(i;), i; € Zs do not
have the same coordinates (y;(¢¢), y;j+1(i)) and correspond to
different phase angles. In order to minimize this variance, we
choose the set 7§ that provides the smaller distance between
the respective points (y;(if), y7,1):

Is = argmin Z (w5 (a8, i1 (89)) = (w5 (68), w1 (E)) 1]

cu tfter
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Fig. 3. (a) An example of a trajectory of a pair of principal components,
dissected with its symmetry axis. (b) Symmetrization of a set of points (black)
with respect to a known axis covering the coordinate center (vertical line).
The resulting symmetrized set is plotted in red. (c) The results of the same
set with unknown axis. The position of axis is optimized to minimize the
distance from the original set to the symmetrized.

(b) The axis is known

It can be inferred from Fig. 2, the results of period extraction
depend highly on the slope of the cutting line. We introduce
the following heuristic for the axis slope selection: let us split
the trajectory of the principal components with the axis that is
the closest to the symmetry axis of the dissected trajectory as
shown in Fig. 3(a). We do so wishing for sets Z& and Z5 to
differ as much as possible in respect to the phase variance in
order to have the ability to choose. To find the symmetry axis
we exploit the method of symmetrisation of a set of points
proposed in [28], [29]. Let the symmetry axis coincides with
the ordinates axis y; = 0. According to [28], [29], symmetrize
a set of points (y1,y2) an auxiliary vector Y = [y1,¥5]"
is formed. Let the elements of Y be ordered so that for a
symmetrized vector Yy it holds:

—y(m +14),i=1,...

yl(l): , M,

/

yo(i) = yo(m' +1i),i=1,...,m/,

y1(1) =0,i=2m' +1,...,m.

Then the symmetrization that minimizes the deviation
Vs = Yl|2

of symmetrised vector Y, from the original vector Y is
obtained through the transformation:

Y, = QY,
where
0 I, 0
1 1 — m
0 0 In72m

In general the symmetry axis is given by y = tg(¢)z or x = 0.
We’ll define the angle ¢ as the solution of a minimization
problem
¢ = argmin [[(Yy)s — Yol
$€[0,7/2]

where Y, is the vector of coordinates of Y in the rotated by
¢ coordinate system. Fig. 3(b) presents a set of points and the
results of its symmetrization with respect to the ordinates axis.
The original positions of the points are marked with black dots.
The symmetry axis is plotted in blue. The red dots correspond
to the adjusted positions of the points: the set of red points in
symmetrical with respect to the ordinates axis.

The original set of (black) points was rotated around the
coordinates centre and then symmetrized. The results of sym-

.| metrization of the rotated set and the evaluated symmetry axis
_| are presented by the Fig. 3(c).

Example 1: period extraction on synthetic data. To demon-
strate the proposed method of period extraction, let us con-
sider two synthetic time series: x1(f) = sin(i) + ¢ and
x2(1) = 0.54 4 10sin(¢) 4 €. To extract the periods we depict

(c) The axis is unknowneach time series X; and X, with a pair of selected principal

components and cut the trajectory of (y;,y;+) with its sym-
metry axis to determine segmentation points Zs. The simplest
way to select a pair of principal components is visual analysis:
for a pair with approximately equal eigenvalues we plot the
trajectory of principal components. If the trajectory is similar
to the spiral, then we select it as a periodic pair. The results
of period extraction of the time series x(i) = sin(i) + €
and x2(i) = 0.5¢ + 10sin(4) 4 ¢ based on the pair of principal
components selected this way are presented on the Fig. 4. The
time series x4 (¢) are plotted in Fig. 4(c) and Fig. 4(d). Fig. 4(a)
and (b) demonstrate how the values /A; decrease with j. The
time series 1 () only contain a periodic constituent. The first
two components were selected since they have almost equal
eigenvalues that are significantly greater than zero. The time
series x2(¢) = 0.5¢ + 10sin(4) + £(¢) consists of the periodic
Z2(i) = 10sin(7) and of the trend Z2(i) = 0.5¢ (see Fig. 4(d)).
In this case the first principal component y; correspond to the
trend X5, while the second and the third have approximately
equal eigenvalues and correspond to the periodic X,. The red
circles in Fig. 4(c) and Fig. 4(d) correspond to the extracted
segmentation points ;.

Example 2: principal component selection for the funda-
mental period extraction on the data from [12]. Although
the visual analysis works well for this simple example,
this method, but from other evident faults, has a limitation
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Fig. 4. An example of period extraction for the synthetic time series 1 (i) =
sin(i¢) + € and z2(¢) = 0.5 + 10sin(z) + € on the basis of the first pair
of principle components with approximately equal eigenvalues. The squared
values of eigenvalues are given in subfigures (a) and (b). The pairs (y1,y2)
and (y2,y3) were chosen for (a, ¢) and for (b, d) respectively. The subfigures
(c) and (d) demonstrate the results of period extraction: red circles mark the
segmentation points (ends extracted of periods).
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Fig. 5. The figure demonstrates a limitation of visual analysis of principal
components. The subfigures plot: (a) the eigenvalues of trajectory matrix and
(b, c) the results of period extraction based on the first (b) and the second (c)
periodic pairs (y1, y2) and (ys, y4) of principal components. The subfigure
(a) suggests several candidate-pairs with approximately equal eigenvalues,
each pair leading to a different segmentation result.

connected with the need to chose between several periodic
components. One possible solution is to chose the pair with
maximum eigenvalues, assuming that principal components
with lower eigenvalues approximate periodic components with
higher frequencies. This approach was implemented to the
data [12], consisting of several periodic constituents. The re-
sults of processing and segmenting the time series are pictured
on Fig. 5. Fig. 5(a) and (b) plots the values of the square
roots /A; of the eigenvalues. It can be seen that each time
series has several pair-candidates: there is more than one pair
of principal components y;,y;+1 with approximately equal
eigenvalues A; ~ \; 1. Since each pair correspond to different

periodicity, the results of segmentation into periods depend on
a selected pair. Fig. 5(b) and Fig. 5 (c) demonstrate the results
of segmentation of the time series based on the first (y1, y2)
(b) and the second (ys, y4) (c) periodic pairs for each time
series. The blue line is the historical time series, the red circles
mark the starting/ending points of the segments. The red line
correspond to a part of the time series that did not fit into
the trajectory matrix H. This experiment demonstrates that
the time series might have several candidate pairs even if the
periodicity can not be seen by eye. The principal components
must be chosen upon some formal criterion.

V. AUTOMATIC SELECTION OF THE FUNDAMENTAL PAIR
OF PRINCIPAL COMPONENTS

The procedure of automatic selection utilized in the paper
is based on the method proposed in the paper [30]. The idea
behind this method is to detect principal components, periodic
with the same frequency comparing their spectral densities.

For time series X the Digital Fourier Transform is given
by:

x(i) = Zf(k)w;(k_l)(i_l), W, = exp(—27mi/m). (6)
k=1

In this paper the spectral densities are computed with Fast
Fourier Transform. Fig. 6(a, b, c) pictures the spectral density
of the time series X : the dependencies of the amplitudes | f (k)]
on the frequencies (k — 1)/m, where

1

m

m

Z :C(Z-)W;(kfl)(ifl) )

i=1

f (k)

Knowing the spectral density gives us information about the
periodicities that are most strongly manifested in time series
X. We choose a minimum nonzero frequency wpn;n, presented
in the time series as a basic approximation of the fundamental
frequency to look for when choosing a periodic pair of
principal components.

The procedure of selecting a pair of principal components

is the following.

1) Form a set ) of candidate pairs. Since the eigenvalues
of the principal components of periodic pair are almost
equal, the principal components in candidate pairs have
consequent indices:

Y={ly;,¥yi+1)|\j +1>0, 1 <j<N.}

As it was shown in Section “Principal component se-
lection” a periodic pair of principal components con-
sists of two periodic functions differing only in their
phase. The spectral densities of such principal com-
ponents have their maximums of amplitude |f(k)| in
the same frequencies (k — 1)/m. For each candidate
pair (y;,yj+1) € Y we check if the maximums of
their spectral densities coincide to decide whether this
candidate pair indeed forms a periodic pair.

Let k; be the number of frequency, corresponding to the
maximum value |f7 (k)| of principal component

kj = |7 ().

2)

argmax
ke{0,...,m—1}
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Due to the noisiness or signal modulations, the spectral
density may become “smeared”: the peaks become less
sharp and precise and the arguments k; and k;;; may
not exactly coincide even for matching principal com-
ponent. We construct the set V* of periodic candidate
pairs (y;,yj+1) € Y, verifying that

|kj - j+1‘ <eM,

where M equals to the number of samples per sec-
ond. Parameter € controls accepted smearing of spectral
density. The results of computational studies, provided
in [30] allow us to fixate this parameter equal to 1/M.
We then obtain a set of periodic candidate pairs:

V' ={(yjyj+1) € V| [kj — kjpa| <1}

3) Among the candidate pairs obtained by the algorithm
we choose a pair (y;,y;+1) with (k —1)/m closest to
minimum nonzero frequency wp,, of time series X.
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Fig. 6. Spectral density of the studied time series a., ay, az (acceleration
along the dimensions x, vy, z). For each time series the first nonzero frequency
peak wmin is detected. Then the pair of principal components with the closest
frequency is chosen.

VI. EXPERIMENTAL STUDY OF PCA PERIOD EXTRACTION

In this section we describe several tests of performance
of the proposed method in dependence on the shape s and
the functions f and a of the nearly periodical time series
X. All the experiments were conducted on synthetic data. In
the experiments it is supposed that though the frequency and
the shape of the signal may undergo spontaneous changes,
these changes are not too drastic, so that the time series can
be represented as distorted periodical time series. The exact
range of “acceptable” change is hard to define due to the
low level of formalization of the notion of nearly periodic
time series we use. Here we investigate limits of “acceptable”
changes experimentally. We use noisiness to model both shape
distortions and time scaling and use the variance of noise as
a measure of distortion.

A. Robustness to noise level

Nearly periodical time series X, used in the experiments,
were obtained from strictly periodical time series X, Z(i +
T) = s;, 1 <i < T with period T" and shape s by exposing
X to different types of noise:

1) Additive noise

w(i+T)=2(i) +e 7

with ¢ ~ N(0,0) and noise level measured as
0./ max X.
2) Argument noising

(i +T) =#(i+¢), (8)

with £ ~ A (0,0) and noise level measured as o /7.
3) Mixture-type noising

(i +T)=23(1) - (1+¢), 9)

where X is the result of applying type 2 (8) noise to
the time series X. Here € ~ N(0, ) and noise level is
measured as 0./ max X.

Fig. 8 contains the dependencies of the F-score on the noise
level, plotted for different shapes s, for type 1 (7), type 2 (8)
and type 3 (9) of exposure to noise. The basic shapes used in
this experiment are the sine, the Gaussian bell and the triangle,
plotted on Fig. 7 (a, b, c¢). Each shape s had length T" = 50
and was repeated S = 30 times.

Time ind;

(b) Gauss

(a) sine (c) triangle

Fig. 7. The examples of basic shapes used in experiments to generate nearly
periodical time series.
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Fig. 8. The dependencies of F1-score on the noise level for three types of
noising. Each subfigure corresponds to a type of noising and contains the
dependencies for three basic shapes: sine, Gaussian bell and a triangle.

The experiments provide some insight into the range of ac-
ceptable transformations: performance of the proposed method
is adequate (F; 2 0.7) when 0. < 1.5max(X) for types 1

and 3 of noising, and o. < 27 for type 2.

~

B. Increasing Robustness to frequency modulations with mov-
ing window technique

Fig. 9 demonstrates how different phase modulations affect
the results of period extraction. Fig. 9(a) and 9(d) plot the time
series (in blue) with sine-modified and log-modified period
T(i) respectively. The modulation functions are plotted on
the same figures in green. The changes of period are more
rapid for the time series in Fig. 9(a) than for the time series
in Fig. 9(d). The trajectory (Fig. 9(b)) of periodic principal
components of the first time series is less stable compared
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Fig. 9. The figure illustrates two examples of segmenting phase-modulated
time series. The phase is given by 27i/T'(¢) with T'(¢) ~ sin(27wi/m) for
subfigures (a, b, ¢) and T'(¢) ~ log(1+4) for (d, e, f). In the second case the
change of period length is smooth and the method extracts the segmentation
points of approximately the same phase. In the first case, the changes are much
more significant. As a result, the trajectory of principal components changes
its shape and we find considerable phase shift in segmentation points. Splitting
the trajectory into inner and outer circles will improve the results, which is
the motivation for applying moving window technique.

to the trajectory of the second time series (Fig. 9(e)). As a
result, one can see the continuous shift in the phase of the
segmentation points x(i;), 1; € Zg for the first time series
(Fig. 9(c), blue line plots the time series, red circles mark the
segmentation points z(7;)) and almost no shift for the second
time series (Fig. 9(f)). To reduce this effect we apply the
moving window technique. The details of the technique can be
found in [31]. The point of the method is to split the time series
into shorter parts, so that the each part would have more stable
periodicity and the trajectory of principal components would
have more regular structure. The results of applying moving
window technique to period extraction from the time series
with sine-modified period from Fig. 9(a) are demonstrated by
Fig. 10(a) and Fig. 10(b), which plot the extracted periods,
aligned to the same length for the basic version of the proposed
method and its modification with moving window technique.
Fig. 10 shows less diversity in the second case. The value of
F also improved.

(a) “before”: Fy = 0.4997

(b) “after”: F; = 0.6414

Fig. 10. The figure displays the results of period extraction for a frequency-
modulated time series with 7°(¢) ~ sin(27¢/m). Subfigure (a) presents the
extracted periods S, obtained with the basic version of the proposed method.
The segments S; were aligned to the same length. The continuous change of
period length evoked the phase shift which can be seen as variety of form of
the extracted periods. Subfigure (b) presents the aligned periods extracted with
the moving window modification of the proposed method. The segments are
now more alike due to reduced. For quantitative assessment of improvement,
the values of Fy for e = 0 are given.

In the experiments, the moving window technique was
implemented if the length of the time series exceeded 10
periods lengths. We used Ty = 1/wp, as a zero-order
approximation of period length 7T'. The required length m of
time series is at least 37y. The complete procedure of period
extraction sums up as following:

1) For the shorter time series X = {z(1),...,2(10Tp)}
find a new T approximation of 7" and compute the list
{y1,...,yn~} of principal components with A\ > --- >
An. Here we set parameter N of the trajectory matrix
H to 1.75T7, because the computational experiments
demonstrated almost no dependence of the quality of
period extraction on this parameter for N > T (where
T is the average period length). Choosing a small value
of N one risks to miss the periodicities of higher
frequency. Setting N too high increases computational
time required to select a pair of principal components.

2) Chose a fundamental periodic pair (y;, ¥y, +1)-

3) Plot the trajectory of (y;,y;+1), cut it with the symme-
try axis to obtain the segmentation points Zs.

4) Compute a new approximation of period length, Tprc =
m/(k; — 1). This approximation is used to shift the
sliding window.

If the time length if the time series is more than 107j, the
window is shifted to Tpc, so that the procedure is repeated
for the time series X = {z(Tpc),...,z(Tpc + 10Tpc)},
then the sliding window is shifted again and so on. After each
shift the window captures a new piece of the original time
series, extracting new segmentation points and computing new
approximation Tpc to use on the next step. The procedure
repeats until all m points of time series X are covered by the
method'.

VII. ANALYSIS

In this section we describe some classical methods of
estimating the period length and provide a comparison of the
results we obtained applying the proposed method and the
classical alternatives to the walking data set.

A. Alternative methods of estimating the period length
The Least Squares Estimation. To obtain the least squares
estimation one fits the model
Q
x(i) = Z Ag cos(2mwgt) + By sin(2mwgi)
g=1

best according to the residual sum of squares

m Q
{wis, A, B} = argminz x(i) — Z(Aq cos(2mw,i)
w,A,B T —
=1 q=1
2
+ B, sin(27rwqi))

The code for conducting experiments is avail-
able at http://svn.code.sf.net/p/mlalgorithms/code/ in the
directory Group874/Motrenko2014TSsegmnetation/web/.
There is also a demonstration version, available at

http://193.233.212.81/Motrenko2014PeriodExtraction/start.html
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Consider for simplicity the case of ¢ = 1. Then Ti; =
M /27w, g and, as shown in [14], the residual squares func-
tional can be modified to an asymptotically equivalent one (for
0 <w<0.5)

m

{wyss, A, B} = argmin {Z (i) — 2 Z (i) (A cos(2mwi)

w, A, B i—1 i=1

2
+Bsin(2rwi)) + —(A? + B?)
m
(10)
to provide the following estimates A and B of A and B

. 2 & ,

— Z z (1) cos(2mwi),
i=1

Maximization of the periodogram. Note that the functional (10)

can be written as following

Z 22(1)—2 Z (A cos(2rwi)+ B sin(27rwi)) —|—% (A*4+B?) =

=1

which means the minimization (10) is equivalent to max-
imizing the periodogram [15] 2 ’:c(i)e*i“’ﬂ. In this paper
we do not distinguish between these estimators, considering
only the one given by (10) and treating it as least squares
estimation. The cross correlation estimation. To obtain the
cross correlation estimate, we partition the time series into .S
segments S; = {x(ip@¢—1)41,--.,2(iT.¢))} of same length T'
in the predefined range [Tinin, Tmax] and compute the average
Pearson’s correlation coefficient
1 S—1

ﬁ P(St, St+1)

t=1

Corr(X,T) =

between the neighboring segments S;, S;11. The cross corre-
lation estimate of the period is then given by

Tcorr = argmax Corr(X, T).
T

We chose the |Tinax| = m/4, meaning that the time series
should contain at least four periods, and the minimum number
Tinin of points in a period to three.

B. Comparing the results

The proposed method was tested on synthetic and real
data. The evaluation technique exploited in this paper requires
the knowledge of ground-truth segmentation. To apply it one
needs the time series that are already marked. To avoid
confusion, we do not use existing automatical step-detectors to
obtain ground-truth segmentation data and only use manually
segmented time series for comparison. This complicates the
process of collecting data. This is why we had to use the
synthetic time series for evaluation to increase the sample size.

According to our definition (1), each synthetic nearly pe-
riodical time series is defined by its shape s, time scaling

. 2 &
B(w) = — szin(%rwi).
i=1

function f and shape-modifying function a. The basic shapes
used in the experiment are sine (fig. 7(a)), Gaussian bell
(fig. 7(b)) and triangle (fig. 7(c)). The f and a modifications
used in the data generation are limited to the three types of
noising specified by equations (7), (8), and (9). Synthetic time
series were generated with random noise component € sampled
from N (0, max X) for type 1 and type 3 or (0, T) for type
2.

The dataset includes accelerometer-based time series of
human gait we measured with a hand-held smartphone. We
used the accelerometer with sampling rate of 40 samples per
second. The tri-axial data was merged into one-dimensional
time series:

(i) = \/ag(z') +a2(i) +a2(i), i=1,...,m.

We also used ECG time series and blood pressure time series
from PhysioNet database [32]. The descriptions of the data
sets cam be found in [33] for ECG time series and in [34]
for the blood pressure. Each record was splitted into several
one-minute long time series.

TABLE 1
THE STRUCTURE OF THE SAMPLE SET.

Synthetic time series: total N¢s = 240

Nis m S | 10001 /T
Type 1 80 1500 | 30 0
Type 2 80 1500 | 30 7.2
Type 3 80 1500 | 30 6.8
Real-life time series: total N¢s = 560
Nis m S | 10001 /T
Walking 10 3000 | 18 5.7
Jogging 12 3000 | 20 5.2
Leaping 8 3000 | 15 6.9
ECG 350 | 6000 | 70 5.6
Blood pressure | 180 | 7500 | 60 4.2

General statistics of each data set (synthetic time series, gait,
ECG and blood pressure) that we used to run computational
experiments is given in Table I. General statistics for synthetic
data set are presented by types of noisiness. Gait data set
is divided by particular gait instances: walking, jogging and
leaping. Table I contains number ;s of time series in each
data set, average length m of time series and number S of
periods per time series of this data set.

The rightmost column contains a random variability coef-
ficient 10007 /T of period length T, expressed in percents.
Here T is the average period length of time series of a
particular data set, and o is an estimate of change rate of
period length

1 S
ar = g Z|(Zr+1 - Z:) - (%Z‘ - i:—1)|a
t=1

averaged by all time series for this data set. When the period
length T' does not change, i; € Zg are linear by ¢ and o7 = 0.
If period length changes randomly with mean value 7', than
or is an estimate of its standard deviation. We choose o
over standard deviation to measure random variability since it
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compares only contiguous periods and is less affected by deter-
ministic trend, if present. Variability coefficient 10007 /T for
synthetic time series depends on the type of noisiness. Among
the real life data sets the values 10007 /7" are approximately
the same with the lowest value for blood pressure data set and
the highest value for the gait data.

Table II compares the proposed method with the alternatives
presented in Section VII-A. For each data set we provide
the results of period extraction with the proposed method,
labeled “PCA”, and the alternatives. The alternative methods
are labeled “LSE” for Least Square Estimation or and “Corr”
for the correlation method. As we have mentioned in Sub-
section VII-A, periodogram maximization is asymptotically
equivalent to the least square estimation. Comparing the meth-
ods, we observed very similar performance for these methods.
That is why “LSE” columns now present results for both of
these methods, containing the best outcome of two options.
Table II presents F} scores,

TP TP
TP 4 FP’ TP+ FN

for the tested methods. Better performance yields higher values
of these three criteria. The values presented in Table II were
obtained by averaging F} scores, Precision and Recall over all
time series from the particular data set.

The quality estimates F; depend on the value of uncertainty
parameter €, which defines how far the extracted segmentation
points i; can deviate from the “true” segmentation points 4}
and be still considered correctly extracted. Fig. 11 illustrates
how the value of Fj score grows with the increase of e.
Fig. 11(a, b, ¢) and Fig. 11 (d, e, f) show F7j(e) dependencies
for the three tested methods applied to synthetic time series
of different basic shapes and types of noisiness, accordingly.
Fig. 11(g, h, i) correspond to gait, ECG and blood pressure
time series. Horizontal axis represents uncertainty parameter e,
scaled by 100/T for easier comparison with 10001 /T values,
presented in Table 1.

As the value of ¢ increases, more segmentation points ¢; are
recognized as true positives. The number of false negatives
does not change. The number of false negatives may only
decrease by the same number as true positives have increased,
resulting in constant sum 7T'P + F'N + F'P. Best performing
algorithms are the ones with higher areas under curve. Rapid
convergence indicates low values of F'N + F'P. Almost linear
behavior suggests that TP+ F N+ F' P is rather high compared
to T'P, which is not desirable. The Fig. 11 also demonstrates
that performance of the tested methods depend much more on
the type of noisiness than on the shape of a signal: the curves
on Fig. 11(a, b, c) appear the same, while Fig. 11(d, e, f)
differ considerably. That is why Table II presents the results
by types of noisiness, rather than by shapes.

The exact value of uncertainty parameter ¢ was specified
based on the sampling rate and the noisiness of the data,
so that the ¢ would approximately equal to op. Under this
heuristic rule, an algorithm that extracts periods of constant
length should yield a relatively high score even if there are
considerable random variations in ground truth period lengths,
but would fail to obtain perfect score if period length changes
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Fig. 11. The dependence of F}-score of the tested methods on the of the
size of e-neighbourhood of the ground truth segmentation points 47 for each
type of synthetic time series. The size is given in percents of the average
period length T'. As the parameter e increases, more extracted points 7; are
recognised as true positives and the value of F7 increases as well. Vertical
lines mark the values of 100¢/T that yield F, Precision and Recall values,
reported in Table II.

TABLE I
AVERAGED PERFORMANCE OF THE TESTED METHODS: F'-SCORE,
PRECISION AND RECALL.

F1

Precision

Recall

PC

LSE

Corr

PC

LSE

Corr

PC

LSE

Corr

Typel

0.9220

0.1485

0.9039

0.9623

0.7861

0.6120

0.9561

0.7125

0.8966

Type2

0.9953

0.7825

0.6495

0.9022

0.7306

0.6070

0.9012

0.7094

0.9930

Type3

0.9803

0.6508

0.7891

0.9466

0.7167

0.6941

0.9273

0.6396

0.9569

gait

0.8287

0.8400

0.7759

0.8014

0.9311

0.5978

0.7710

0.6649

0.7510

ECG

0.8328

0.8745

0.8417

0.8169

0.9500

0.8577

0.9292

0.8167

1.0000

BP

0.8836

0.8958

0.7820

0.9622

0.9722

0.9336

0.9001

0.8225

0.9492

with a deterministic trend. These values for each data set from
Table I are marked with vertical lines on Fig. 11 (d-g). Setting
€ as shown on Fig. 11, we computed F7i, Precision and Recall
values, that are listed in Table II.

As can be seen from Table II the proposed method performs
better than the alternatives in terms of F) score and Precision
in case of synthetic time series but fails to outperform both
alternatives when applied to real data. Nevertheless, as Fig. 11
shows, if one chooses to permit less deviation from the ground
truth Zs™ and sets a smaller € parameter, the proposed method
will do better than alternatives, when applied to gait and blood
pressure data sets. However, the quality of period extraction
will drop for all three methods as well.

Table II indicates that the cross correlation estimation
dominates its in terms of Recall, being less prone to miss
segmentation points than its alternatives. On the contrary, it
scores much worse in Precision. Similarly, the method based
on least square estimation generally performs well in terms
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of Precision, which means it makes less false positives, but
demonstrates relatively low Recall. Compared to the alterna-
tives, the proposed method scores evenly both Precision and
Recall.

We have yet to define, why the alternatives demonstrate
rather low quality on the synthetic set, but outperform the
proposed method on the real data set. On one hand, we found
that the proposed method performed better (in comparison
the alternatives) when the structure of the data was more
complicated. When period length 7' changes randomly with
small variance, the alternatives, which extract periods of
constant length, might work well enough. When T changes
deterministically (see, for example Fig. 9), or varies greatly,
the proposed method provides better results. However no
evidence on dependance between relative performance on the
noisiness level was found. Fig. 12 presents the dependencies
of F-score on the noisiness level, measured as described in
Section VI-A. Fig. 12 compares the proposed method (PC)
and the alternatives (LSE and Corr). The proposed method
outperforms the alternatives regardless of the noisiness level.

10 12 4 6 8
Noise level, &

(c) Type 3

4 6 8
Noise level, &

(b) Type 2

4 6 8
Noise level, &

(a) Type 1

Fig. 12. The dependence of I -score on the noisiness (measured as variance
of the period length) of synthetic data for the proposed method (PC) and the
alternatives (LSE, Corr). The figure shows that as the noisiness increases, the
proposed method outperforms the alternatives.

Nevertheless, the quality of period extraction drops for the
proposed method as well with the increase of variance and
complexity of periodicity. To improve performance of the
proposed method in such cases, we plan to design a method
of splitting the trajectory of periodic principal components
with one cut instead of two cuts. Such procedure would
make the method more precise for the time series of complex
structures, because for such series the form of the trajectory
is far from being a spiral we expect it to be. One loop of such
trajectory often has self-intersections and internal sub-loops.
Cutting such trajectory with symmetry axis leads to extracting
abundant segmentation points (false positives). Our next goal
is to design a robust “one-cut” method to reduce the number
of false positives.

VIII. CONCLUSION

The paper discusses the problem of partitioning nearly
periodic time series into period-like segments. Our motivation
for solving this problem is to design the hierarchical frame-
work for behavior analysis. Developing such framework would
enable the creation and development of intellectual software
that will support its users in maintaining healthy lifestyle
monitoring the daily processes in order to predict unwanted
changes in biometric characteristics. The framework can be
used for applications connected with monitoring biosystems

behavior. The usage of the framework with respect to the
appropriate data will be helpful in defining the boundaries
of normal and abnormal development of any biosystem as
well distinguishing between types of process development and
predicting the transition from normal to abnormal.

The framework deals with the data from body sensor
network in bottom-up fashion. In case of accelerometry data,
the lowest levels of hierarchy correspond to the time series
of particular activity types and the highest levels describe
sequences of activities. The features extracted at this level are
processed to the next level, where activity recognition occurs.
On yet higher levels of hierarchy the framework deals with
sequences of activities to extract behavioral patterns. Different
data sources yield different numbers of levels with their own
interpretations. The purpose of this framework is to learn
typical behaviors, and then apply the model to detect abnormal
behavior. Solving period extraction problem contributes to
the first step of this hierarchical model for the system of
monitoring human health and behavior. Automatic partitioning
of a wide range of time series into segments can be used for
interpretable feature extraction. The key importance of this
step is that the segmentation results are interpretable in the
sense of the nature of the process: basically, we move from
steps to activities and than to more complex sequences. A
similar hierarchical approach is discussed in [35], [36], [37].

We claim that for the nearly periodic time series a fun-
damental period can be seen as interpretable segment. We
propose a method of segmenting nearly periodical time series
into fundamental periods. The ending points of the periods are
defined through cutting the trajectory of a pair of principal
components of the trajectory matrix. We describe a procedure
of selecting a pair of principal components, corresponding
to the fundamental periodic component of the time series.
This method of period extraction is more general compared to
those traditionally used as it does not rely on any assumptions
the form of the signal. We compare our method to the two
straightforward methods of period extraction, which are based
on least squares estimation (or its asymptotical equivalent, pe-
riodogram maximization) and correlation analysis, on several
real and synthetical data sets. Though the proposed method
does not outperform the alternatives on all the data, it is at
least comparable with the best-performing algorithm in all
experiments.

APPENDIX
THE PROOF OF THEOREM

A similar result was obtained in [30] for time series

X ={z(1),...,2(),...2(m)}

of the form ‘
x(i) = Ae™ cos(2mwi + ¢)

with w € (0,1/2), A, « € R, ¢ € [0,27) and m - w € N. It
was shown that if « — 0 with m — oo sothatm-a« = vy € R
the principal components y; and yo can be expressed as

n(l) = Bye™ cos(2mwl + ¢1),
ya(l) = Bye® cos(2mwl + ¢2),
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1, P2 €10,2m), I=1,....m—N+1

and the difference |¢1 — ¢o| — 7/2.

We consider more general form (5) of time series. Ac-
cording to [38], eigenvectors v; of H form the orthonormal
basis in the linear vector space defined by the columns of H,
thus for the time series of the form (5) we obtain [27] two
eigenvectors vy, vy with non-zero singular values A1, Ao # 0.
The corresponding principal components y1,ys have the form

y1(1) = B1(1) cos(2mwl + ¢1),
y2(1) = Ba(l) cos(2mwl + ¢3).

Comparing the expression
m—N+1

Z Ai+lAl+k COS(27TU}(l +
=1

for (i, k)-th element of H'H with Nv]Avy, we obtain (using

the equation (4)) that
1)~ A/\/NA.

Then |A4;] < C = Cs < By(l), Ba(l) < C1. The orthogonal-
ity condition v{vz = 0 yields

i) + ¢) cos(2mw(l + k) + ¢)

)2 cos(2mwl + ¢1) cos(2mwl + o) =

1)? cos(4mwl + ¢1 + b2) (11)

m—N+1

+COS(¢1—(]§2) Z Bz(l)

1=1
Consider the first sum (Eq. (11)). Since B;(I) < C4,

m—N+1

Z B1(1)B2(1) cos(4mwl + ¢1 + ¢2) <

=1

12)

m—N-+1
Cc? Z cos(dmwl + ¢1 + ¢2) =
=1
m—N+1
C? Z cos(4mw - 1) cos(¢y + ¢2)—
=1
m—N-+1
C? Z sin(4dmw - 1) sin(¢1 + ¢2).
1=1
For ), cos(lz) and ), sin(lz) we have:

L cosz — 1 — cos((L + 1)z) + cos Lz
g cos(lx) = ,
2—2cosz
1=1
3sinx — sin((L + 1)z) — sin Lz

2—2cosx

L
Z sin(lz) =
I=1

Then, for any m we have the following upper constraint for
the sum in (11):
m—N-+1

Z B1(1)Ba(1) cos(dmwl + ¢1 + ¢2) <
=1

4

As for the sum in Eq. (12), since A4; > C5, we obtain
m—N-+1

> B*1) = (m—N+1)C5.

=1
If cos(¢p1 — ¢2) # 0, then the expression in Eq. (12)
is unlimited. For the orthogonality condition to hold, the
|1 — ¢d2| — 7/2 must hold as well.

That ends the proof. Let us now obtain the estimations of

A1, Ao for the case when A; is constant: A; = A. According
to (4),

o2 (2 cos(¢1 + ¢2) + Hsin(gy + ¢2)>
1 )

Z cos? (2mwl)

=N ZN 1+ cos(4mwl))

or

Z sin? (2mwl)

Then the Value of A; can be estlmated as

ZN 1 — cos(4mwl)).

A2y A? sin(4rwiN)
Acos R N (1+cos(dmwt))dt = 5 ( - 47rwN)
for y; ~ coswy,
A A? sin(4mwN)
Asin & N J, (1—cos(4mwt))dt = 5 <1 + 47rwN>

for y; ~ sinwj.

The eigenvalues are asymptotically (with N — o0) equal.
Moreover, when w = 1/2 and T' = 2, we obtain only one
principal component describing periodicity of X. This is why
the method is limited to the cases of w € (0,0.5].
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