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Abstract

We solve an instance ranking problem using ordinal scaled expert estimations. The experts
define a preference binary relation on the set of features. The instance ranking problem
is considered as the monotone multiclass classification problem. To solve the problem we
use a set of Pareto optimal fronts. The proposed method is illustrated with the problem of
categorization of the IUCN Red List threatened species.
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1. Introduction

The problem considered in this paper is an instance ranking problem (Strijov et al., 2011;
Liu et al., 2010; Cheng et al., 2010) for categorization of threatened species of animals and
plants included in the IUCN Red List. The categorization of threatened species maintaining
by the IUCN Red List is as follows. Each species belongs to one of seven possible categories:
extinct, extinct in the wild, critically endangered, endangered, vulnerable, near threatened
and least concern. This categorization is monotone with respect to the risk of extinction.
The category can be defined by one of two methods.

1. A direct designation of the category by the expert concordance method, e.g. Delphi
method (Schmidt, 2010).

2. A computation of the species category by the expert-given model using features
description (Strijov et al., 2011).

The drawback of the first method is that all experts should possess the entire information
about the whole set of objects. The drawback of the second method is model sensitivity.
The above problems are the problems of the expert data formalization.

In terms of an instance ranking problem an object is a species included in the Red
List, and a feature is a criteria describing the species (for example, population size, area
square etc.) An expert makes feature estimations in an ordinal scale. Therefore, the matrix


Inna
Typewriter
Stenina M.M., Kuznetsov M.P., Strijov V.V. Ordinal classification using Pareto fronts // Expert Systems with Applications, 2015, 42(14) : 5947–5953


”objects-features” is given. The matrix consists of species description and class labels. The
problem is to construct a model estimating the class label by the species’ description.
The following assumptions about features structure are considered:

e the given set of features is sufficient to construct an adequate model;
e the partial order relation is defined on the feature values;

e the rule "the bigger the better” is valid, that is the greater feature value causes the
greater preference by an object;

e different expert estimations of the same object are allowed.

The set of feature values is a partially ordered set. A partial order is one of the well-
known binary relations considered in (Linstone and Turoff, 1975). Ordinal-scaled objects are
not points in Euclidean space; their nature is non-numeric. The methods of consideration
of the non-numeric information considered in (Agresti, 2007). The considered problem
contains an expert information about feature preferences, that is the preference binary
relation is defined over the set of features. The number of features in the IUCN problem is
comparable with the number of objects. The problems of feature selection are considered
in (Park et al., 1995; Nogin, 2004).

The monotone classification of objects using preferences is considered in (Doyle, 2004;
Furnkranz and Hullermeier, 2003; Har-Peled et al., 2003; Hullermeier et al., 2008; Huller-
meier and Furnkranz, 2004; Xia et al., 2008). The most common method are based on
pairwise comparisons. The problem of monotone classification arises in the area of infor-
mation retrieval. To solve this kind of problems the ordinal regression (Cossock and Zhang,
2006) is used as well as the modified SVM (Yue et al., 2007) and boosting (Freund et al.,
2003).

We propose the following method to solve the monotone classification problem. The
current version of the IUCN Red List categorization is supposed to be compiled correctly
except for some noise objects. Let us find the function mapping the set of objects to the set
of class labels using the feature preferences, given by experts and historical class labels. This
function is defined over Cartesian product of partially ordered sets of expert estimations.
The set of values of this function is a partially ordered set of the class labels.

We propose two-stage categorization method: model construction and classification. To
construct the model we propose the Pareto multiclass monotone classification algorithm,
POF-MC. The Pareto principle is considered in (Nogin, 2003). We assume that the number
of objects of the Pareto front should be minimum for the stable models. The methods of
Pareto front reduction are considered in (Nogin, 2003, 2004). We propose to reduce the
Pareto front by considering an expert information about feature hierarchy (Podinovsky,
2007).

The proposed method is compared with the decision tree method, with the generalized
linear regression and with the copula algorithm (Kuznetsov, 2012).

2. Problem statement

Consider the set of pairs

@Z{(Xi,yi)}, iEI:{l,...,m},



consisting of objects x; and class labels ;. Each object
}T7 jej:{lavd}7

is described by the ordinal scaled measurements. This means that the set of values for the
feature x; is the partially ordered set L; = {l1,...lx;} with a binary relation < such that

X:[X:l?"'?Xj?"'?Xd

X EL]' = {ll,...lkj}, where [} < --- < lkj-

The set of values Y for the class labels y; is also the partially ordered set Y = {ly,...,ly}
with a binary relation, 1 < ... < ly. In this paper we consider only strict total orders,
for example total, irreflexive, asymmetric and transitive binary relations. However, the
proposed methods remain valid for the strict partial orders.

The problem is to find a monotonic function

P x> g, (1)
where
xeX=L; x:---xLsand y €Y.
This mapping should minimize the error function value,
S(e) = r(yi ), (2)
i€l
where ; = p(x;) and the function
() (3)
is the distance between elements of a partially ordered set.

Distance function between elements of a partially ordered set. Let us define a
distance function (3) between elements of a partially ordered set. To do this introduce the
binary matrix 1 describing binary relations between elements of the set Z = {ly,...,1.},
li < ... < 1l;. Ifl; = [; then the matrix has 1 on the intersection of the row i and the
column j. For strict total orders the matrix is lower triangular with a zero diagonal.

Table 1: Matrix of a partial order

Labels ll 12 lz_l lz
1 0 0 0 0

ls 1 0 0 0
l,_1 0
l, 1 1 1 0

The element [; of the set Z corresponds to the row ¢ of the matrix 1. The distance
between [; and [; is the Hamming distance between the binary vectors,

T(li, lj) = RHam(StT'i, St?’j), (4)

where Rypam(i,7) is a number of unmatched elements of the rows ¢ andj. The distance
function (4) defines the distance between class labels from the set Y as well as the distance
between feature values from the sets L;, j =1,...,d.



3. Two-class Pareto classification

Consider a special case of the problem (1) such that Y = {i;,l2} = {o,1}, 0 < 1. That
is the sample ® consists of the objects with the class labels o or 1. Denote a monotonic
function f minimizing (2) for the two classes by

fix—1. (5)

Find the function f(x) using a separable sample set

A~ ~

such that ® is a subset of the entire sample ©. ”Separable sample” concept in the case
of partial orders means that there exists a hull called "POF” corresponding to each class
defined by the binary relation > such that the hulls for the two classes do not intersect. First
the function f will be defined on the separable sample set D such that the error function
value (2) equals zero on this sample. Second, the the definition of the mapping f will be
extended to the entire sample ® and to the whole set of values X.

3.1 Dominance relation without features hierarchy

Now we introduce the following concepts of the dominance relation: n-domination and p-
domination. Split the set of object indices 7 of the separable sample D to the two subsets

I=N||P
such that y, = 0 for n € N, and y, = 1 for p € P. We say that an object x,, =
[Tn1, ..., Tng] | m-dominates an object x; = [z1,. .., %:a] ',
or  Xp p X,
if Tnj = x5 foreach j=1,...,d.
We say that an object x, = [p1,...,2pa] | p-dominates an object X = [Tk, .., Tkd] ',
or Xp >p X,
if Tpj = xp; foreach j=1,...,d.

Assume that an object neither n-dominates nor p-dominates itself,

X fnX, X)fpX

Fig. 1 illustrates dominance relation in the case of two features; z-axis shows feature
values from the set L, y-axis shows feature values from the set Ls. The yellow color indi-
cates the n-dominance space for the object x;,, and the p-dominance space for the object x,,.
The object x,, n-dominates each object x; from the corresponding n-dominance space, as
well as the object x,, p-dominates each object x;, from the corresponding p-dominance space
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Figure 1: Dominance relation without features hierarchy

3.2 Dominance relation with features hierarchy

Let us introduce the following concepts of dominance relation with features hierarchy,
~7 and >~5. Let the feature x, be more preferable than the feature x;,

r >=t, where r,t € J.

An object x, = [mnl,...,xm,...,xm,...,xnd]T n-dominates an object x; =
T
[T, Zid]

Y

or X, =p Xi,
if one of two following conditions holds:
1. x, n-dominates x; without features hierarchy, x,, >, x;, or

2. Tpr = wxp and x!" dominates x; without features hierarchy, x!" =, x;,
where X" = [Tp1,. .., Tnt, -+ Tnry - - -, Tna) |, that is the object x; is n-dominated by
the imaginary object x!" corresponding to the object x, with the rearranged fea-

tures r and t.

The object x, = [:Epl,...,xpr,...,xpt,...,xpd]—r p-dominates the object x; =
T
[xkla"kad] )
or Xp »p Xk,

if one of two following conditions holds:
1. x, p-dominates x;, without features hierarchy, x, >, x, or

2. xpr > ap and x)' dominates xj without features hierarchy, xI' >, xq,
tr

where x| = [Tp1, .., Tpty ooy Tpry - o xpd]T, that is the object x; is p-dominated by

the imaginary object XZ" corresponding to the object x, with the rearranged fea-
tures r and t.



Set any object neither n-dominates nor p-dominates itself,
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Fig. 2 illustrates dominance example for the case of two features, where the first feature
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Figure 2: Expansion of dominance spaces due to features hierarchy

is more preferable than the second one. x-axis shows feature values from the set L, y-axis
shows feature values from the set Ly. The imaginary objects x2! and le (green points)
expand dominance spaces corresponding to the objects x,, and x,,, respectively.

Table 2 shows possible dominance spaces according to the feature preferences. The
expanded n-dominance space corresponds to the objects having feature 1 more preferable
the feature 2. The expanded p-dominance space corresponds to the objects having feature
2 more preferable the feature 1. For the other objects dominance spaces don’t expand.

3.3 Pareto optimal front construction

Define the Pareto optimal fronts, the sets defining boundaries of classes of the separable
sample.

Definition 1 A set of objects x,,n € N is called Pareto optimal front POF,, if for each
element x, € POF, doesn’t exist any x such that x =, X, (X =5 X, for the dominance
relation with feature hierarchy).

Definition 2 A set of objects x,,p € P is called Pareto optimal front POF), if for each
element x, € POF), doesn’t exist any x such that x >, X, (X =5 Xp for the dominance
relation with feature hierarchy).

Fig. 3 illustrates Pareto optimal fronts for the two-class separable sample. Each object
is described by the two features. z-axis shows feature values from the set LL;, y-axis shows



Table 2: Dominance spaces corresponding to the feature preferences
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Figure 3: Pareto optimal fronts

feature values from the set LLa. The green triangles and the blue squares are the objects
of different classes. The objects of the Pareto fronts are the red circles. The dotted line
indicates the n-front class boundary, the solid line indicates the p-front class boundary.
Fig. 3(a) shows Pareto optimal fronts corresponding to the dominance relation without
features hierarchy. Fig. 3(b) shows Pareto optimal fronts corresponding to the dominance
relation with features hierarchy (feature 1 is more preferable than feature 2).

Fig. 3(b) that dominance space for the front POF), doesn’t change under the assumption
of features hierarchy. However, POF,, does change: it contains less objects and has extended
dominance space.

In the sequel, we consider dominance relations only with feature hierarchy.

3.4 Two-class classification

Use the constructed Pareto optimal fronts and the corresponding class boundaries to define
monotone classifier (5).

Function f: x — ¢ corresponds the class label o to the object x € X if there exists
an object x, € POF,, n-dominating x. Function f corresponds the class label 1 to the
object x € X if there exists an object x, € POF),, p-dominating x.

(6)

(%) o, if there exists x,, € POF,,: x,, =5 X;
%) =
1, if there exists x, € POF,: x, ;5 x.

If the set of such elements is empty we extend the definition of the function f to the entire
set X according to the the nearest Pareto optimal front:

R —_
x'€POF,,UPOF,,

where the sets POF,,, POF,, include Pareto optimal fronts and boundary points correspond-
ing to the imaginary objects. The function p is defined by the function (3) applied to the



feature values:

plx,x) =) r(aj,a)). (7)

Jj=1

In other words, the function f classifies an object x according to the rule of the nearest
POF if the object x isn’t dominated with any POF.
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Figure 4: Two-class classification example

Table 3: Two-class classifier example

Object | x | f(x)
1 (4,5) 0
2 6,7) | 1
3 1(96) | 1

Fig. 4 shows model data consisting of the two-class objects. The first class objects are
the green triangles, the second class objects are the blue squares. Each object is described
by the two features. x-axis shows feature values from the set L, y-axis shows feature values
from the set ILo. The classified objects are the black circles.

Table 3 shows results of classification and consists of three columns. The first column
contains object numbers, the second column contains the objects coordinates, the third
column contains classifier outputs. The label 0 means that the object is classified as the
green triangle, the label 1 means that the object is classified as the blue square.

3.5 Separable sample construction

Consider the method of a set Z construction such that the function f: x — § is monotone
on the coresponding subsample. Split the set of indices Z into the two subsets

I=N||P



such that
yn=0, neN, and y,=1, peP.

Consider the power p of the set of objects dominated by the object x; and belonging to the
foreign class:

,LL(X‘) - #{Xj ’Xi n Xj,j GP}, if 4 EN;
' #{x; | xi =p x5, €N}, ifi€P,
where # means power of the set. To find the set 7 we consequently eliminate defective
objects from the entire sample ©.

1: IZ’PUN. . .
2: return Z =P| |N.

3. 1:=717, P:=P, N :=N; {initialization}
4: while the sample has the objects x;, i € Z such that u(x;) > 0 do
5: 1 := argmax u(x;);
€L
6: I:=1I\{i};
7. if i € P then
8: P = P\{1};
9: if i € N then

10: N = N\{i}.

Or ] Or ]

8r = = m 8- L] E =

7+ ] [ ] T+ ]
o 6f m o 6f m
g g
S5 n S 5 L]
i , B
L 4 ® L4

3r 3r

2r 2r

B 4 6 8 1 4 6 8

Feature 1 Feature 1
(a) With defective objects (b) Without defective objects

Figure 5: Defective objects elimination

Fig. 5 shows the model sample set, where objects are described with two features. This
sample set consists of two classes (the green triangles and the blue squares). Fig. 5(a)
shows the sample set with the defective objects (1;1), (5;4) and (8;6). The defective objects
dominate the objects of the opposite class. This objects are marked as the red circles.
Fig. 5(b) shows the separable subsample obtained using the defective objects elimination
method.
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Table 4: Monotone classifier illustration

4. Monotone classification

4.1 Monotone classifier construction

Consider a general case of the problem,
Y:{ll,...,lu,lu+1,...,ly}, lh <0<y <lyy1 < ... <y

Denote by {1,...,u,u + 1,...,Y} class labels indices. Construct a monotone two-class
classifier
fuuri:x— gy e{o,1}, xeX

for each pair of adjacent classes u,u + 1. To construct the two-class classifier we split
the sample into two parts: objects with the class labels < [, and objects with the class
labels = l,11. Assign the label 0 to the objects from the first part of the sample and the
label 1 to the objects from the second one. Wherein the set of object indices of the separable
sample ® is splitted into two disjoint subsets,

7= /\/'u|_|73u+1, where n € Ny, if yp, <1y, and p € Pys1, if yp = lyt1.
The monotone classifier

o(x) =o(fi2, - fr-1y)(x), @: XY,

is defined as follows,

mintly | fuus1(x) = o, i {lu | fuusr(x) = 0} #0;
ly, if {lu | fuu+1(x) =0} = 0.

Table 4 illustrates formula 8. An output of the monotone classifier ¢(x) is a first class
label [, where the classifier f, .41 equals o. If each output f,.+1 equals 1, assign the
label Iy to the result of monotone classification.

Fig. 6 shows an example of the set of objects from three different classes. The axis
show feature values describing objects. The various objects are marked with red circles,
green triangles and blue squares. The classes boundaries corresponding to the n-fronts are
indicated by the dotted line, the solid line indicates the p-fronts. The classified objects
are the black circles. Table 5 shows an example of the set of two-class classifiers f12, f2,3
included in the monotone classifier ¢(x) for the illustrated sample. The first column contains
object numbers, the second—their coordinates, the third and the fourth—results of two-
class classificators for the adjacent classes. The label o in the third column means that the
classifier fi o assign the object to the first class. The label o in the fourth column means
that the classifier fo 3 assign the object to the second class. The last column contains the
results of monotone classification. The values of this column correspond to the output of
the monotone classifier.

p(x) = (8)

11
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Table 5: Monotone classifier example

Number | Object, x | fi2(x) | faz(x) | p(x)
1 (1,1) 0 0 1
2 (5,4) 1 0 2
3 (9,9) 1 1 3

4.2 Extension of Pareto optimal front definition for monotone classification

To construct the fronts between classes having labels [, and 41 We use objects with the
class labels [y, ...,[l, to construct an n-front for the class with the label [, and objects
with the class labels l,41,...,ly to construct a p-front for the class with the label 1.
Therefore the same objects belong to fronts for different classes and a front for one class
contains objects of different classes. Fig. 7 shows three-class model data sample. The objects
of a first class are the red circles, the objects of a second class are the green triangles. The
figure shows that the object (7;2) from the first class belongs to the n-fronts of both the
first and second classes.

This yields that the definition of the n-front is extended by the objects with the class
label not greater than the n-front class label; the definition of the p-front is extended by
the objects with the class label not less than the p-front class label.

4.3 Admissible classifiers

Definition 3 The classifier ¢ (8) is called admissible if for each function fy 41 the tran-
sitivity condition holds:

{ if fu,u-l—l(x) =0, than f(u+s)(u+1+s) (x) =0 s:(u+1+s)<Y, (9)
if fu,u+1(x) =1, than f(u—s)(u+1—s) (X) =1 S (u - 5) =1

12
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Figure 7: An example of a common object for two fronts

Definition 4 We shall say that Pareto optimal fronts POF,(u) and POF,(u + 1) don’t
itersect,
POF,(u) N POF,(u+1) =0,

if the boundaries of their dominance spaces don’t intersect,

POF,(u) N POF,(u+1)=0.
Fig. 3 shows an example of the non-intersected Pareto optimal fronts.
Theorem 1 If the Pareto optimal fronts don’t intersect,
POF,(u) N POFy(u+1)=0, w=1,...,Y —1,
then the transitivity condition (9) holds for any classified object.

Proof Prove the theorem for the case z = 3. For more number of classes the proof is
similar. The considered dominance relation can be constructed with features hierarchy or
without it.

Suppose that Pareto optimal fronts don’t intersect,

POF,(u) N POF,(u+1)=0, u=1,2;
POF,(u) N POF,(u+1)=0, u=1,2;
and there exists an object x such that the transitivity condition doesn’t hold,
f172(X) =0, f2,3(X) = 1.

(The case fi2(x) =1, f23(x) = o0 is similar).
The result fi 2(x) = o can be obtained if one of two following conditions holds:

13



1. 3y e POF,(1): y >, x.
If y € POF,(2), then it follows that f3(x) = o and contradicts with the assump-
tion fo3(x) = 1.
If y ¢ POF,(2), then

dw € POF,(2): w .Y,

and it follows that

POFH(Q) DOW>pn ¥y mnX = f2’3(X) =0.

. The fronts POF,,(1) and POF,(2) doesn’t dominate the object x. In that case,

Jyo € POF,(1), such that yg = arg min p(x,y),
y€POF,, (1)UPOF, (2)

where p is the distance function (7).

The assumption f3(x) = 1 holds in one of two possible cases.

(a)

Jt e POF,(3): t >, x.
The object t doesn’t belong to POF,(2) since POF,(2) doesn’t dominate the
object x. Then it follows that

dtg € POFp(2) o top t.
Therefore we obtain a chain of inequalities,
to ~p t ~p X,

and it follows that to =, x. That contradicts with the assumption that the
front POF,(2) doesn’t dominate the object x.

The object x isn’t dominated by the fronts POF,,(2) and POF,(3). In this
case the object x isn’t dominated by any front POF,,(u), POF,(u + 1) such that
u=1,2.

Note that there exists an object y; € POF, (1) such that a boundary of domi-
nance space of y; contains a point yqg, where yg is the nearest points to x in the
sence of Hamming distance (7). The object y; can belong to the front POF,,(2).
In this case, the distance between x and POF,,(2) is less than the distance be-
tween x and POF,,(1). Here the distance between a point and a front means
the distance between a point and the nearest point of a front. If the object y1
doesn’t belong to the front POF,,(2), there exists an object

y2 € POF,(2):  y2 =n y1.

However, yo %, x since the object x isn’t dominated by any front. Then it
follows that the distance between the object x and the front POF, (2) is less
than the distance between the object x and the point yo of the front POF,,(1).

14



The proof for the pair of fronts POF,(2), POF,(3) is similar. There exists an
object wi € POF,(2) such that a boundary of dominance space of w; contains
a point wg, where wq is the nearest points to x in the sence of Hamming dis-
tance (7). The distance between the object x and the front POF,(3) is not less
that the distance between x and wo € POF,(2).

We have proved that the distance between x and POF,,(2) is not greater than
the distance between x and POF,,(1), and the distance between x and POF,(3)
is not less than the distance between x and POF,(2). From fia(x) = o it
follows that the distance between x and POF, (1) is less than the distance be-
tween x and POF,(2). Then x is nearer to POF,,(2) than to POF,(3). That
contradicts with the assumption fs3(x) = 1 and concludes the proof.

Since the method of Pareto optimal fronts uses only separable samples, all fronts are dis-
joined. Therefore the monotone classifier (8) is admissible and the transitivity condition (9)
holds for any classified object.

5. Computational experiment

The goal of the computational experiment is to illustrate the proposed instance ranking
method, POF-MC, for the problem of the IUCN Red List categorization using expert es-
timations. The data contain 110 objects from three categories and are described by 102
features. The set of features is splitted by the experts into 5 subsets. Inside each subset of
features experts define features preference binary relation. Below we describe a classifica-
tion algorithm for subsets of features, the classification error function and the results of the
algorithm comparison.

5.1 Monotone classification with feature aggregarion

The set of features is splitted by the experts into five subsets. Each subset contains features
describing a certain group of object properties:

e biological condition Aj;
e cumulative threats As;
e significance As;

e protection level Ay;

e willingness As.

The set of feature indices J is splitted into five disjoint subsets J = A; U ... U As.
The experts set the feature subset preferences: denote A; >~ A; if the subset A; is more
preferable than the subset A;. The preference order on the subsets is

Ay = ... = As.

15



Table 6: An excerpt from the questionary with expert estimations

Feature Condition Trend
population 3 — big; 4 — grows;

2 — small; 3 — stable;

1 - critically | 2 — reduces;

small 1 — reduces fast
Population 2 — complex; 2 — stable;
structure 1 — simple 1 — disappear

Inside each subset some partial order of feature preferences is defined by the experts.

To get the result classification for the Red List species we construct a monotone classi-
fier (1) for each subset of feature indices Aj, ..., As. Therefore for each object x we obtain
the set of classification results

yi =pa,(x), i=1,...,5.

Assume the vector y = [y1,...,ya]" to be the new feature descriptions of the object x,
PA (X)
Xy = e
PAs (X)

To obtain the final results of classification construct the classifier (1) basing on the new
feature description y and the expert information on the new feature preferences A; = ... >
As:

s=¢(y)-

5.2 Feature aggregation

Table 6 shows an excerpt of the questionary, fulfilled by an expert. This table shows a
description of one species described by the four features.

Table 7 shows feature preferences inside the subset ”biological condition”. An element
of the table equals 1 if a row feature is more important that a column feature, and equals
0 otherwise.

Let {x1,...,Xxp} belong to the same aggregation subset and be ordinal scaled, x; €
L; ={1,...,k;}, j=1,...,p. To aggregate the features map the natural numbers to the
elements of IL; such that:

h=1 ..., ==k

The value of an aggregated feature 1 is the normalized sum of the values of the features
Xj:jzla"-vp:

p
b= xj—p+1
j=1
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Table 7: The matrix of feature preferences

1 if row feature > column feature
Population size

Population size trend
Population density
Area size

Area structure
Population structure
Genetic diversity
Physiological condition
Habitat condition

o|o|o|o|o|o|o|o| o Population size
o|o|o|o|o|o| o|o| | Population size trend

o|o|o|o|o|o|o|~| | Population density
~|o|o|o| | ~|~|+~|~]| Population structure
—|=|o|=|=|~=|~|~|~| Genetic diversity

—|o| o|=|=|=|=|~|~|Physiological condition

o|o|o|o|o|~| —|—|—| Habitat condition

olo|o|lo|o|o| ~|~]| | Area size
—lo|lo|o|o| || ~|+| Area structure

After the feature aggregation the set of feature indices J = {1,...,d} maps to the set J' =
{1,...,d'} with the less number of elements. A partial order corresponds to each subset of
features j € Ju, C J', i =1,...,5. Denote by j, > ji, if the feature j, is more important
than j;.

The matrix of expert preferences is considered to be self-consistent such that the partial
order relation is acyclic. If j;;, > ... > j;, > ji,, the features j;,, ..., j;, are non-comparable.

5.3 Algorithm comparison

The POF monotone classifier (POF MC) is compared with the decision trees algorithm, the
generalized linear regression and the copula algorithm (Kuznetsov, 2012). To compare the
algorithms we use three criteria:

1. mean learn error (2),

2. mean test error, computed by the LOO and 10-fold Cross Validation methods (see
the description below),

3. time for model construction.

Table 8 shows the results of the experiment.
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Leave-One-Out. At each iteration one object is excluded from the learn sample and
becomes the test sample. The following error value is computed:

LOO = — 3" r(yis p(xi, D\ {(xi:9)})). (10)

it
where ¢(x;, ©\{(x;, yi)}) is the monotone classifier (8) constructed on the sample ® without
the object x;, and r(-,-) defined by the formula (4).

10-fold Cross Validation. The set of indices Z = {1, ..., m} of the sample D is splitted
randomly into 10 disjoint subsets: Z = By | |...[ | Bio-

10
OV =35y plxi DT\ B)), (11)
k=11i€B;

where ¢(x;,D(Z \ By) is the monotone classifier (8), constructed on the sample ® without
the objects with the indices from the set By, and r(-,-) is defined by the formula (4).

Table 8: Algorithm comparison

Algorithm Mean learn | LOO Model construc-
error tion time, sec
POF-MC 0.2157 0.5588 2.1251
Decision trees 0.2451 0.6863 0.4154
Generalized linear model 0.57 0.71 3.6
Copulas 0.57 0.61 0.25
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Figure 8: Comparison of the computed and the expert estimated categories

Fig. 8 compares the categories computed by the POF algorithm using the LOO error
function. The z-axis shows computed categories, the y-axis shows expert categories. A
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radius of a point is proportional to the number of objects with the corresponding computed
and expert categories. For the significant number of objects the computed and expert
categories are the same.

5.4 Testing algorithm on various data sets

Besides the IUCN data the POF-MC algorithm was tested on the data sets Cars and CPU
from the UCI repository. The CPU regression problem was transformed to the monotone
classification problem by splitting the sample set into four monotone classes according to
the target variable values. The LOO (10) and CV (11) error functions were used to measure
the quality. Table 9 shows the results of the experiment. The last column of the table shows
the result of the algorithm proposed at (Kotlowski and Slowinski, 2009). The missing value
in the table means that the corresponding experiment was not executed beacuse of absence
of the expert information or small number of features.

Table 9: POF-MC classification results on various data sets

Data Objects | Features | Classes POF POF LPRules
number | number | number LOO 10-fold 10-fold
IUCN 102 102 3 0.5588 — —
Cars 1728 6 4 0.3553 | 0.1933 0.03
CPU 209 6 4 0.6411 | 0.4833 | 0.073

6. Conclusion

The authors propose the algorithm for multiclass monotone classification, POF-MC, of
objects describing by partially ordered sets of expert estimations. The POF-MC solves
the instance ranking problem, the multiclass classification problem where a set of classes is
ordered. The algorithm uses Pareto optimal fronts basing on the object dominance relation
subject to feature preferences.

The authors propose the method of feature convolution to reduce the feature space
dimension. This method is based on expert estimations about feature preferences.

The algorithm is compared with well-known algorithms and shows adequate results. It
solved the IUCN Red List categorization problem.
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