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Thursday, 8:30-10:00 - Room 125

Revenue Management Application and
Theory

Stream: Revenue Management II
Invited session
Chair: Darius Walczak

1 - Challenges in RM & Pricing Optimization of Product-
Resource Networks
Darius Walczak

We review optimization challenges in product-resource networks
found in revenue management and pricing applications. Average net-
work consists of thousands of products where each product consumes a
finite number of resources, and the objective is to select one of several
price points for each product so that expected revenue is maximized.
Due to dimensionality and stochasticity in the problem, real-life soft-
ware has to rely on near-optimal controls. We present some of these
approaches. We also revisit calculating other business metrics, such as
expected demand, for a given solution.

2 - Shaping Demand to Match Anticipated Supply
Anant Balakrishnan, Sifeng Lin, Yusen Xia

Firms can exploit their information on inbound supplies to better match
demand with anticipated supply through dynamic pricing. We develop
an economic model to address short-run demand shaping decisions for
vertically differentiated products, i.e., to determine the prices for high
and low quality products in each period so as to dynamically segment
the market and maximize profits. We identify properties of the optimal
price and sales trajectories, and assess the benefit of dynamic pricing
versus myopic or sequential pricing approaches.

3 - An Efficient Pricing Method to Determine the Net-
work Value of Influentials in Social Networks
Evren Guney, Volkan Çakır, Irem Düzdar, Abdullah Ozdemir

Companies use social networks to benefit from word-of-mouth mar-
keting by influentials. Most of the previous studies focus on how to
maximize the number of individuals reached starting from an initial
set of influentials. However, many companies are focused on the to-
tal revenue. Hence, a modified objective function that maximizes total
revenue, instead of the number of individuals, is proposed. An efficient
pricing method to determine the network value of customers is devel-
oped and influence maximization is studied from the aspect of revenue
maximization and tested on certain real-life data.

4 - A Model for Competition in Network Revenue Man-
agement
Nishant Mishra

We study a model of competition in network revenue management
where multiple risk-averse players compete to satisfy uncertain con-
sumer demand. For a linear inverse demand function, and for a sym-
metric game, we can come-up with closed form expressions for equi-
librium quantities and prices, and we also establish some monotonicity
properties. We then numerically study asymmetric competition to gen-
erate further insights. For instance, we find that asymmetry with re-
spect to risk aversion has the same effect as higher demand uncertainty
for the more risk averse competitor.

� HA-16
Thursday, 8:30-10:00 - Room 127

Categorical Data Analysis and Preference
Aggregation

Stream: Intelligent Optimization in Machine Learning
and Data Analysis
Invited session
Chair: Michael Doumpos

1 - Partial Orders Combining for the Object Ranking
Problem
Mikhail Kuznetsov, Vadim Strijov
We propose a new method for the ordinal-scaled object ranking prob-
lem. The method is based on the combining of partial orders corre-
sponding to the ordinal features. Every partial order is described with
a positive cone in the object space. We construct the solution of the ob-
ject ranking problem as the projection to a superposition of the cones.
To restrict model complexity and prevent overfitting we reduce dimen-
sion of the superposition and select most informative features. The
proposed method is illustrated with the problem of the IUCN Red List
monotonic categorization.

2 - An Interactive Approach for Multicriteria Selection
Problem
Anil Kaya, Ozgur Ozpeynirci, Selin Ozpeynirci
In this study, we work on multiple criteria selection problem. We as-
sume a quasiconcave utility function that represents the preferences
of the decision maker (DM). We generate convex cones based on the
pairwise comparisons of DM. Then, we build a mathematical model
to determine the minimum number of pairwise comparisons required
to eliminate all alternatives but the best one. Using the properties of
the optimal cones and the pairwise comparisons, we develop an inter-
active algorithm. We conduct computational experiments on randomly
generated instances.

3 - Data-Driven Robustness Analysis for MCDA Prefer-
ence Disaggregation Approaches
Michael Doumpos, Constantin Zopounidis
Preference disaggregation (PD) is involved with inferring multicrite-
ria decision models from decision examples. The robustness of mod-
els and recommendations obtained through PD methods, has attracted
much interest. Previous research has mostly focused on uncertainties
related to preferential parameters of decision models. In the context
of PD, however, the data used to infer the model also affect the ro-
bustness of the results. In this presentation we discuss this issue and
present ways to enhance existing robust MCDA techniques in a data-
driven context.

� HA-17
Thursday, 8:30-10:00 - Room 005

Second-Order Conic Optimization

Stream: Interior Point Methods and Conic Optimization
Invited session
Chair: Jacek Gondzio

1 - Mixed-Integer Second-Order Conic Optimization
(MISOCO): Disjunctive Conic Cuts and Portfolio Mod-
els
Tamás Terlaky
The use of integer variables naturally occurs in Second Order Conic
Optimization problems, just as in linear and nonlinear optimization.
Thus, the need for dedicated MISOCO algorithms and software is evi-
dent. This talk gives some insight into the design of Disjunctive Conic
Cuts (DCCs) for mixed-integer CLO problems, and into the complex-
ity of identifying disjunctive conic cuts. The novel DCCs may be used
to develop Branch-and-Cut algorithms for MISOCO problems. Pre-
liminary computational experiments by solving classes of MISOCO
Portfolio Selection problems show the power of the DCC approach.

2 - Interior-Point Methods within Algorithms for Mixed-
Integer Second-Order Cone Programming
Hande Benson
Second-order cone programming problems (SOCPs) have been well-
studied in literature, and computationally efficient implementations of
solution algorithms exist. In this talk, we study an extension: mixed-
integer second-order cone programming problems (MISOCPs). Our
focus is on designing an algorithm for solving the underlying SOCPs as
smooth, convex NLPs, while using primal-dual regularization to intro-
duce warmstarting and infeasibility detection capabilities. We present
numerical results obtained using the Matlab-based optimization pack-
age, MILANO.
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Object ranking with monotone constraints

There given a sample of m objects,

D = {(xi , yi )}
m
i=1,

where

◮ xij ∈ Xj belongs to a partially ordered set Xj ,

◮ y ∈ Y belongs to a response variable ordered set of values Y .

The goal: to construct a mapping

f : X1 × ...× Xn → Y .
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Partially ordered set of feature values

The set Xj with a given partial order relation � with the following

properties:

◮ reflexivity, ∀a ∈ Xj (a � a),

◮ antisymmetry, ∀a, b ∈ Xj , (a � b) ∧ (b � a) ⇒ (a = c),

◮ transitivity, ∀a, b, c ∈ Xj (a � b) ∧ (b � c) ⇒ (a � c).
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Partial order matrix

A partial order matrix Zj for the sample D and the set Xj describes

binary relation between each pair of the sample elements,

Zj(i , k) =

{

1, if xij � xkj ,

0, if xij � xkj .

An example of a partial order relation graph and a corresponding

matrix Zj :

x1 x2 x3

x4

- -

@
@R

Zj =







1 1 1 1
0 1 1 1
0 0 1 0
0 0 0 1







.
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Rank correlation in terms of partial order matrix
Let r1, r2 be the two rankings. Z1,Z2 are partial order matrices,

corresponding to r1, r2.

◮ Kendall rank correlation:

τ(r1, r2) ∝
∑

i

∑

k

([r1i < r1k ] 6= [r2i < r2k ]),

τ(r1, r2) ∝
∑

i

∑

k

(Z1(i , k)− Z2(i , k))
2
.

◮ Spearman rank correlation:

ρs(r1, r2) ∝

m∑

i=1

(r1i − r2i )
2,

ρs(r1, r2) ∝
∑

i

(
∑

k

Z1(i , k)− Z2(i , k)

)2

.
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Voting rules in terms of partial order matrix

◮ Kemeny rule: Z1, ...,Zn are the voting matrices, Ẑ ∈ LO is an

optimal voting:

Ẑ = min
Z∈LO

n∑

j=1

∑

i ,k

(Z(i , k)− Zj(i , k))
2.

◮ Condorcet voting rule: regard the sum of partial order matrices,

Ẑ =

n∑

j=1

Zn,

and find the «winner» using e.g. a Ranking Pairs method.
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A partial order cone

For each set Xj define a cone Xj in a space Rm
+:

Xj = {χj ∈ Rm
+| xij � xkj → χij ≥ χkj ∀i , k = 1, ...,m}.

Example for x2 � x1:
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Vector decomposition theorem

A vector χ belonging to the cone X can be represented as the

nonnegative combination of cone generators zk ,

χ =

m∑

k=1

λkzk , λk ≥ 0,

where zk is also a column of a matrix Z,

zk(i) =

{

1, if xi � xk ,

0, if xi � xk ,

and the decomposition is unique.
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Vector decomposition illustration

Z =

(
1 1
0 1

)

, χ =

m∑

k=1

λkzk , λk ≥ 0.
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Set of solutions for the supervsied problem

◮ Let target estimation ŷ of the vector y belong to a cones

superposition, ŷ ∈
n∑

j=1

Xj .

◮ Then ŷ can be expressed as the non-negative combination of

the cones generators:

ŷ =

n∑

j=1

wjZjλj , λj ≥ 0, ‖λj‖1 = 1.

ŷ = w1







λ11 λ12 . . . λ1m

1 1 . . . 0
0 0 . . . 1
. . . . . . . . . . . .

1 0 . . . 1







︸ ︷︷ ︸

Z1

+w2







λ21 λ22 . . . λ2m

1 0 . . . 1
0 0 . . . 0
. . . . . . . . . . . .

0 1 . . . 1







︸ ︷︷ ︸

Z2
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Parameter estimation

◮ Optimal parameters ŵ, λ̂j minimize the loss function:

(ŵ, λ̂j) = argmin
w,λj

‖y − ŷ‖, ŷ =

n∑

j=1

wjZjλj .

◮ Define the vector of objects weights λ, such that λj = λ. Then

ŷ =

n∑

j=1

wjZjλ = Ẑλ,

where Ẑ = w1Z1 + ...+ wnZn is a matrix of a

"fuzzy"preference relation,

Ẑ(i , k) ∝ p̂(xi � xk).
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Feature weights estimation

◮ Z0 is a partial order matrix for the expert-given vector of

target variables y.
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◮ Instead of full optimization, estimate parameters w such that:

ŵ = argmin
w

‖Z0 −
n∑

j=1

wjZj‖.
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2-step algorithm of parameter estimation

1. Having matrices Z1, ...,Zn , estimate feature weights ŵ and a

fuzzy preference relation matrix Ẑ,

ŵ = argmin
w

‖Z0 −
n∑

j=1

wjZj‖.

2. Having matrix Ẑ, estimate object weights λ̂ and a target

ranking ŷ,

λ̂ = argmin
λ

‖y − Ẑλ‖.
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Example: The IUCN Red List categorization

◮ The main purpose of the IUCN Red List is to catalogue those

animals and plants that are facing higher risk of extinction.

◮ All species should be categorized as

1. EW — extinct in the wild,

2. CR — critically endangered,

3. EN — endangered,

4. VU — vulnerable,

5. NT — near threatened,

6. LC — least concern.
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IUCN species description

◮ Each species is described by the set of ordinal features: PS —

population size, AS — area square, GD — genetic diversity,

etc.

◮ An initial categorization is also given.

Species PS AS GD Category, y

Green Sturgeon 2 2 0 EW

Lagoda Whitefish 0 2 1 CR

Long-finned Charr 3 1 0 EN

Polar Bear 3 3 0 NT

Sandpiper 2 1 0 EN

Shizophragma 1 1 1 EW

Tropical Lichens 2 1 1 LC
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IUCN example, relation matrix estimation

Input: vector y, matrix Z0, feature matrices Z1, ...,Zn.

Output: matrix Ẑ.
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IUCN example, object categories estimation

Input: relation matrix Ẑ, vector y.

Output: estimated classification ŷ.
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Ẑ

20 40 60 80 100

20

40

60

80

100
15

20
25

30
35 10

20

30

40
10

20

30

 

λ2

λ1

 

λ
3

CR
EN
VU

17 / 18



Conclusion and further research

◮ We proposed a ranking algorithm based on partial orders

combining.

◮ The algorithm based on estimation of a fuzzy preference

relation matrix.

◮ The set of possible solutions is a superposition of partial order

cones.

◮ The further investigation now is to propose a regularization

method to choose most informative objects.
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