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Abstract

The paper presents new methods of alternatives ranking using expert estima-
tions and measured data. The methods use expert estimations of objects quality
and criteria weights. This expert estimations are changed during the computa-
tion. The expert estimation are supposed to be measured in linear and ordinal
scales. Each object is described by the set of linear, ordinal or nominal crite-
ria. The constructed object estimations must not contradict both the measured
criteria and the expert estimations. The paper presents methods of expert esti-
mations concordance. The expert can correct result of this concordance.

Keywords: expert estimations, integral quality, object ranking, preference
learning

1. Introduction

To make decisions about managed objects, for example, about nature pro-
tected areas or state regions, one must rank this objects according to an integral
quality estimations, or, equivalently, construct a binary preference function over
the set of objects. To construct the integral quality estimation several steps must
be performed [1].

1. A quality criterion must be chosen to compare the objects.

2. A set of objects must be selected according to the quality criterion.

3. The expert must select a set of features describing the objects.

4. A design matrix ”objects-features” must be fulfilled.

5. The expert estimations of the objects quality and the criteria weights must
be collected. Further we suppose that multicollinearity of the criteria is
not significant.
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We consider various scales for the expert estimations [2]: linear, ordinal
and nominal. Each scale defines a method of transformation to be applied: for
instance, any monotonic transformation can be applied to the ordinal scale.

Decision making and preference learning propose several methods to esti-
mate the integral quality of objects [3, 4]. Unsupervised methods construct the
estimation using the objects description and the quality criterion. This paper
introduces the principal component analysis as an example of the unsupervised
methods [5, 6]. According to this method, an integral quality estimation is a
projection of the objects to a first component of the design matrix. Also Pareto
slicing and metric method can be regarded as the unsupervised methods.

The supervised methods use expert estimations of the objects quality or the
criteria weights [7] besides the design matrix. This paper presents the linear
regression method [1], where the target variable is a vector of the expert-given
object estimations. We consider linear and ordinal scaled expert estimations.

The paper considers a linear model for objects quality estimation [8]. The
expert estimations of the criteria weights and objects quality are measured in the
linear or ordinal scale. In general, model-computed object estimations doesn’t
equal expert-given estimations. This means that expert estimations and model-
computed estimations contradict each other [9, 10]. We propose the method
of the expert estimations concordance. We consider three various cases corre-
sponding to the different types of measurement scales.

The first case considers linear scaled both expert estimations and measured
data. We propose the estimations concordance method as follows. A set of
the admissible expert estimations is a segment restricted by the maximum and
minimum value of the estimation. The model uses a structure parameter to find
the solution as a point of this segment.

The second case considers expert estimations of objects and criteria weights
to be ordinal scaled. Ordinal-scaled expert estimations define a convex polyhe-
dral cone. The design matrix defines a linear mapping of this cone to object
space. The mapped cone can intersect a cone defined by the expert estimations
of the objects. In this case the expert estimations of criteria weights and ob-
jects supposed to be concordant. In the converse case, we present a method of
ordinal concordance. The method minimizes a distance between the vectors in
the cones.

The third case considers ordinal scaled criteria [11]. The proposed method
of objects quality estimation is as follows. Each criterion corresponds to the
convex polyhedral con in objects space. According to the linear model, an
admissible set of the object estimations is a Minkowski sum of the corresponding
cones [12, 13]. The computed estimation is a projection of the expert estimation
to the admissible set of values.

The data: Nature Protected Areas’ Annual Report. We use the report to illus-
trate the proposed methods. Table 1 shows a part of the data. The problem
is to estimate efficiency of each NPA using the measured data and the expert
estimations.
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Table 1: Nature Protected Areas report with the expert object qualities and criteria weights
estimations
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1.00 0.85 0.78 0.70 0.69 0.58 0.48 0.29
x1 NPA 1 1.00 3 0 1 4.5 3 3 2.5 0
x2 NPA 2 0.83 1 7 1 8 2 8.5 5 40
x3 NPA 3 0.67 2 1 1.5 9 1.5 9.5 6.5 66
x4 NPA 4 0.63 1 3 3 5 4.5 18 11 7
x5 NPA 5 0.58 0 12 8 19 11 7.5 11 62
x6 NPA 6 0.50 0 0 2 5 2.5 2.5 3.5 11
x7 NPA 7 0.44 1 5 4 11 20 16.5 15.5 4
x8 NPA 8 0.38 0 0 3 7 1 4.5 2.5 0
x9 NPA 9 0.33 0 6 0 7 1.5 7 4.5 1
x10 NPA 10 0.17 0 0 1 4 2 2.5 3.5 14.5
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2. The integral quality estimation problem

Denote by X = {xij}m,n
i,j=1 a design matrix ”objects-features”. The object

description is a vector xi, the i th string of the matrix X.
The object ranking problem is to find a binary relation ≺ defined on the set

of object pairs, xi ≺ xk. To solve this problem we find a mapping f : X → R,
where X is a set of object values. A set of values R of the mapping f has a
natural binary relation, that is finding a mapping f is sufficient to solve object
ranking problem.

Denote an integral quality estimation of the object xi by yi. We consider a
linear model, where the value of integral quality yi is a linear combination of
the criteria, elements of the vector xi:

yi = f(w,xi) =
n∑

j=1

wjxij . (1)

Denote by f a vector of the values of the function f over the set of objects,

f = [f(w,x1), ..., f(w,xm)]T = Xw, (2)

where w is a vector of criteria weights.
Let each criteria be mapped to the scale [0, 1]:

xij 7→
xij −min

i
xij

max
i

xij −min
i

xij
, i ∈ {1, ...,m}, j ∈ {1, ..., n}.

This paper considers the case of the full rank of X, rank(X) = n, with m > n.

3. Unsupervised integral quality estimation

We will consider the principal component analysis as an unsupervised method
for integral quality estimation. This method finds the objects’ projections to
the principal component coordinates such that the sum of squared distances
between the objects and their projections to the first component is minimum.
Consider the orthogonal matrix W from the linear combination ZT = XTW
where columns z1, ..., zn of the matrix Z have the maximum sum of variances,

n∑
j=1

σ2(Zj) → max,

where

σ2(Zj) =
1

m

m∑
i=1

(zi − z)2, z =
1

m

m∑
i=1

zi.

Columns of the matrix W are the eigenvectors of the covariance matrix Σ =
XTX. The matrix Σ = XTX can be found using singular values decomposition
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of the matrix XTX. Since Σ = XTX = WΛWT, it follows that ΣW = WΛ is
an eigenvectors system of the matrix ΣW.

Therefore the vector of object estimations ŷPCA is the projection of the row-
vectors of the matrix X to its first principal component, and w is the first row-
vector of the matrix W. This vector corresponds to the maximum eigenvalue
of the matrix Σ.
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Figure 1: The principle component method illustration

Figure 1 illustrates principal component analysis for objects quality estima-
tion. The black points are the NPAs from the table 1 describing by the criteria
¡¡Number of PhDs¿¿ and ¡¡Number of Employees¿¿. The PCA estimations yi
of the objects xi are the points projections to the first principal component
indicated by the blue line.

4. Supervised integral quality estimation

The supervised methods use the model (1), the design matrix X, the expert
estimations of the objects y0 or of the criteria weights w0.

4.1. The linear-scaled expert estimations

Weighted sum. Consider the linear-scaled expert estimations of the criteria
weights w0. The vector of the object estimations is the linear combination,

ŷ = Xw0.

This is the simplest method of objects estimation. The main drawback is the
lack of robustness of the result estimations. The small changes of the expert
estimations w0 may cause enormous changes in the result estimation.
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Figure 2: Comparison of the weighted sum method with the principal component method

Fig. 2 shows a comparison of the weighted sum estimation y1 = Xw0 with
the principal component estimation ŷPCA. Each point is an object, NPA. The x-
axis shows the principal component estimation ŷPCA, the y-axis — the weighted
sum estimation y1.

Expert-statistical method. Consider the linear-scaled expert estimations y0. The
method obtains the criteria weights ŵ as the argument of minimum of a distance
between the expert estimations y0 and the computed estimations y′

0 = Xŵ,

ŵ = arg min
w∈Rn

∥Xw − y0∥2.

The solution of this problem is given by the ordinal least squares method,

ŵ = (XTX)−1XTy0. (3)

The vector of the object estimations y′
0 = Xŵ. This vector is contained in

space of the columns of the matrix X and is the nearest vector to the y0.

5. The expert estimations concordance

In this section we will consider both expert estimations of the objects y0

and of the criteria weights w0.
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5.1. Linear concordance of the expert estimations

Consider the computed object estimations y1 = Xw0 using the vector w0

and the computed criteria weights w1 = X+y0 using the vector y0. Here the
pseudo-inverse linear operator X+ = (XTX)−1XT. In other words, the linear
operator X maps the expert estimations w0 to the vector y1, and pseudo-
inverse linear operator X+ maps the expert estimations y0 to the vector w1.
In general case the computed and the expert-given estimations are different,
y1 ̸= y0,w1 ̸= w0.

Call the expert estimations y and w concordant if the following conditions
hold:

y = Xw, w = X+y. (4)

Hereafter we find the expert estimations under the conditions of concordance (4).
Denote by y′

0 = XX+y0 the projection of the vector y0 to the space of the
columns of the matrix X.

α-concordance method of the expert estimations. To resolve the contradiction
in expert estimations let us consider the estimations

wα ∈ [w0,w1] and yα ∈ [y1,y
′
0]. (5)

y0

y′
0

X+

X

y1

w1

w0

X subspace, dim n

Objects space, dim mFeatures space, dim n

wα

yα

Figure 3: The α-concordance method illustration

The pair of vectors wα,yα for the given α is defined by the following condi-
tions,

wα = αw0 + (1− α)X+y′
0, yα = (1− α)y′

0 + αXw0.

Theorem 1. The vectors wα,yα are concordant (4).

Proof. It is easily proved that Xwα = yα and X+yα = wα:

Xwα = αXw0 + (1− α)XX+y′
0 = αXw0 + (1− α)y′

0 = yα,

X+yα = (1− α)X+y′
0 + αX+Xw0 = (1− α)X+y′

0 + αw0 = wα.
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Fig. 3 illustrates the α− concordance method. The vectors y0 w0 are the expert
estimations of the objects and of the criteria weights. y′

0 is the nearest point to
the y0 in the n-dimensional subspace of the columns of the matrix X. The pair
of vectors yα, wα is the concordant pair of the expert estimations.

The parameter α defines expert preferences to the expert estimations of the
objects versus the expert estimations of the criteria weights. If α tends to zero
the expert prefers the estimations of the objects; if α tends to zero the expert
prefers the estimations of the criteria weights. One could allow expert to assign
the parameter α according to his own preferences. Another way to define the
parameter α is to compute it as the argument of minimum of the residuals
sum Q,

Q =
∥w0 −wα∥

n
+

∥y′
0 − yα∥
m

→ min
α

. (6)

γ-concordance method of the expert estimations. The γ-concordance method
refuses from the restrictions (5). It finds concordant estimations in the neigh-
borhoods of the vectors w0,y

′
0 as a solution of the optimization problem (6)

with a regularization parameter γ2 ∈ [0,+∞):

wγ = arg min
w∈Rn

(ε2 + γ2δ2),

where ε2 = ∥w0 −wγ∥2 and δ2 = ∥y′
0 − yγ∥2. The solution of this problem is

the vector of criteria weights,

wγ = (XTX+ γ2In)
−1(XTy′

0 + γ2w0), (7)

and the concordant estimations of objects, yγ = Xwγ . The parameter γ2

defines expert preferences to the expert estimations of the objects versus the
expert estimations of the criteria weights, so as α.

y′
0

w0

Objects space, dim mFeatures space, dim n

X+

X

ε2 = ∥w0 −wα∥2

δ2 = ∥y′
0 − yα∥2

wα

yα

Figure 4: The γ-concordance method illustration

Fig. 4 illustrates the method of γ−concordance. The radiuses of the circum-
circles of the points w0 and y′

0 equal ε and δ, respectively.
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Figure 5: α- and γ-concordance illustration

Fig. 5 compares α- and γ-concordance methods. The x-axis shows the values
of the parameter α changing from 0 to 1, whereas parameter γ is the function
of α,

γ =
α

1− α
,

so γ changes from 0 to ∞. The left figure shows object estimations chang-
ing. The blue lines indicate object estimations for α-concordance, the red lines
indicate γ-concordance. The extreme cases correspond to the expert estima-
tions y′

0 and y1 = Xw0, respectively. The right figure shows changing of the
error function (6). In the case of γ-concordance this function has a global min-
imum corresponding to the optimal value of the parameter γ.

Fig. 6 compares the expert-statistical method and the γ-concordance method
for the optimal value of γ defined by minimal value of the error function (6).
The x-axis shows the expert-statistical estimations ŷOLS. The y-axis shows the
γ-concordance estimations ŷγ .

5.2. Ordinal concordance of the expert estimations

Let the expert estimations y0,w0 be measured in ordinal scales. It means
that the set of the estimations is linearly ordered. Consider a cone in Euclidean
space corresponding to this set. Without loss of generality suppose that the
cone is described by the set of vectors y ∈ Rm with the following restrictions
on the components of y:

y1 > y2 > ... > ym > 0; w1 > w2 > ... > wn > 0.

The set of such vectors y is described by the system of linear inequalities,

Jmy 6 0,
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Figure 6: Comparison of the expert-statistical method with the γ-concordance method

where Jm is the m×m matrix,

Jm =


−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1
0 0 0 · · · 0 −1

 .

In the case of a random order yi1 > yi2 > yim > 0, the matrix of the system will
be constructed from the Jm by permutations of the corresponding columns.

In the same way, the cone of vectors w corresponding to the expert estima-
tions of the criteria weights is described by the system of linear inequalities with
the n× n-matrix Jn.

Therefore the expert estimations y0 and w0 correspond to them×m and n×
n matrices Jm and Jn, respectively.

Correspondence of convex polyhedral cones to the expert estimations. Denote
by Y0 and W0 the cones, corresponding to the expert estimations in the space
of objects and in the space of features, respectively,

Y0 = {y|Jmy 6 0}, W0 = {y|Jnw 6 0}.

The linear operatorXmaps the coneW0 of the expert estimations of the criteria
weights w0 to the computed cone XW0. The linear operator XX+ maps the
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cone Y0 of the expert estimations of the objects y0 to the cone

Y ′
0 = XX+Y0.

The cone Y ′
0 consists of the vectors from the subspace of columns of the ma-

trix X. Fig. 7 illustrated the defined cones.

W0

X+Y ′
0

Y0

Y ′
0

XW0X+

X

Objects space, dim mFeatures space, dim n

Figure 7: Cones corresponding to the expert estimations

The ordinal-scaled expert estimations w0 and y0 are called concordant if
the cones XW0 and Y ′

0 have a non-empty intersection besides the vector 0. In
this case we can found vectors ŷ ∈ Y ′

0 and ŵ ∈ W0 satisfying the concordance
conditions (4).

Properties of polyhedral cones. Now we introduce the following properties of the
polyhedral cones corresponding to the expert estimations.

Lemma 2. If two cones have vertices in the origin, their intersection is a
polyhedral cone.

Proof. A polyhedral cone with the vertex in the origin is described by the sys-
tem of linear inequalities. Let the first cone be described by the systemX1w > 0
and the second cone — by the system X2w > 0. The intersection of this cones

is described by the system with the matrix

(
X1

X2

)
. In other words, their inter-

section is the polyhedral cone with a vertex in the origin.

Lemma 3. The locus Xw is a cone if X is a linear mapping.

Proof. For any vector w ∈ W a vector λw ∈ W. Therefore, if y ∈ Y, we get

λy = λXw = X(λw) ∈ Y = XW.

This completes the proof.

It follows that if W is a polyhedral cone, the linear operator X maps it to
the polyhedral cone XW. A corresponding pseudo-inverse operator X+ maps
the cone Y to the cone X+Y.
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Lemma 4. W0 ∩X+Y ′
0 = {0} ⇐⇒ XW0 ∩ Y ′

0 = {0}.

Proof. Let us note that the cones W0 and Y ′
0 = XX+Y0 have the same dimen-

sion n since rank(X) = n. This means that operators X,X+ imply one-to-one
correspondence from the features space to the space of the columns of the ma-
trix X.

Let the vector
w ∈ W0 ∩X+Y ′

0 w ̸= 0.

Then the corresponding vector

Xw ∈ XW0

as well as
Xw ∈ XX+Y ′

0 = Y ′
0.

That is the cones XW0 Y ′
0 intersect at non-zero vector Xw.

Let the vector
y ∈ Y ′

0 ∩XW0 y ̸= 0.

Then the corresponding vector

X+y ∈ X+Y ′
0

as well as
X+y ∈ X+XW0 = W0.

That is the cones W0 and X+Y ′
0 intersect at non-zero vector X+y.

From Lemma 4 it follows that for any vector wp of the cone Wp = W0 ∩X+Y ′
0

there exists a unique vector y′
p ∈ Y ′

p = XW0 ∩ Y ′
0 such that the vectors wp,y

′
p

satisfy the conditions of concordance 4. Moreover, from the definition of the
cone Y ′

0 it follows that for any vector y′
p ∈ Y ′

p there exists a unique vector yp ∈
Y0 such that y′

p = XX+yp. This implies that a concordant pair ŵ, ŷ must
satisfy following conditions, 

Jnŵ 6 0,

ŷ = XX+y,

Jmy 6 0.

Optimization problem for ordinal-scaled expert estimations concordance. Now
we formulate an optimization problem for ordinal-scaled expert estimations con-
cordance. We will find the nearest vectors ŵ and y1 in the cones W0 and Y0 as
follows:

(ŵ,y1) = argmin
w∈W0,y∈Y0

∥X+y −w∥,

subject to y ∈ Y0,w ∈ W0, ∥X+y∥ = 1, ∥w∥ = 1,
(8)

where ∥ · ∥ is the Euclidean metrics in the space Rm.
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ŵ

X+y1

Features space

Figure 8: The nearest vectors of the cones

This means that the computed vector of criteria weights ŵ is a monotonic
transformation of the vector w0. At the same time the objects estimation ŷ =
XX+y1 is the nearest point to the expert estimation y0 from the subspace of
the columns of the matrix X. This method illustrated with fig. 8.

The problem of the nearest vectors can be solved by maximizing the rank
correlation. That is, we will find the vectors ŵ ∈ W0 and y1 ∈ Y0 such that
Kendall correlation between ŵ and y1 is maximum:

(ŵ,y1) = arg max
w∈W0,y∈Y0

ρ(X+y,w) : ∥X+y∥ = 1, ∥w∥ = 1.

The algorithm of minimizing distance between vectors in cones. Rewrite the
problem (8) as follows:

minimize ∥X+y −w∥
subject to (X+y)TX+y = 1 and wTw = 1,

Jnw 6 0 Jmy 6 0.

To solve this problem we propose an iterative algorithm consequently finding
approximations of vectors y(2k),w(2k+1) at every even and odd iteration. Define
the vector w(0) = w0 at the iteration k = 0. Denote by a = y(2k) and b =
w(2k+1) the solutions of two consequent optimization problems:

2k : 2k + 1 :

minimize ∥X+a−w(2k)∥ minimize ∥X+y(2k+1) − b∥
subject to (X+a)TX+a = 1, subject to bTb = 1 = 1,

Jma 6 0. Jnb 6 0.

While solving the optimization problem, define the constants

w(2k) = a(2k−1) and y(2k+1) = b(2k).

Since the target function and inequality constraints are convex, the solution
will be found for finite number of iterations. Methods of convex optimization
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to solve this problem are provided in [14]. To solve the problem of the rank
correlation maximization we use a genetic algorithm.

In the case of a non-trivial intersection of the cones W0 and X+Y0 the
solution of (8) is a vector ŵ from an intersection of this cones and a vector ŷ
satisfying

ŷ = XX+y1 = Xŵ.

That is, vectors ŷ, ŵ satisfy the concordance conditions (4). If an intersection
of the cones is trivial, the proposed algorithm find the nearest non-concordant
vectors. As in the case of linear scales, we present a method of the expert
estimations concordance using a structure parameter α,

yα = (1− α)ŷ + αXŵ.

Here the vector yα and the corresponding vector wα = X+yα define the
cones Yα and Wα, respectively. Furthermore, the intersection

Yα ∩XWα ̸= ∅.

As in the case of linear-scaled expert estimation concordance, the parameter α
defines expert preferences to the expert estimations of the objects versus the
expert estimations of the criteria weights. Below we present a method of con-
structing the linear-scaled estimations from the computed ordinal-scaled esti-
mations.

Stable estimations with respect to the design matrix disturbance. Consider the
computed cone Yp = Yα ∩Wα and the design matrix X. Disturb the elements
of this matrix,

X∆ = X+∆,

with a normal-distributed noise, ∆ = δI, δ ∼ N (0, σ2). An image of the linear
mapping y = X∆w is also normally distributed. According to the hypothesis
call a stable solution yp the central vector of the cone Yp under the condi-
tion ∥yp∥ = 1. The so-called Chebyshev point yp is a center of an incircle of
the cone Yp.

Find the maximum distance from the target vector yp to the cone faces as
follows:

ŷp = arg max
yp∈Yp

{∥yp − b∥2 : b ∈ Rm \ Yp, ∥yp∥2 6 1}. (9)

Fig. 9 illustrates the Chebyshev point yp of the cone Yp.

Expert estimation concordance using isotonic regression. Consider the special
case of the problem (8) such that the expert estimations of the objects y0 are
linearly scaled and the expert estimations of the criteria weights are ordinal-
scaled. In this case, the problem can be formulated in the terms of the well-
known isotonic regression problem [15, 16].
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Yp

ŷp

Objects space

Figure 9: An stable solution: Chebyshev point yp

Let w̃ = X+y0. Find the monotonic sequence w1 6 ... 6 wn as the
nearest to the vector w̃,ŵ = arg min

w∈Rn

n∑
i=1

(w̃i − wi)
2,

wn > ... > w1.

To make the expert estimation concordant, rewrite this problem with the struc-
ture parameter λ. If λ tends to zero the expert prefers the estimations of the
objects; if λ tends to zero the expert prefers the estimations of the criteria
weights. Find the vector ŵ such that:

ŵ = arg min
w∈Rn

(
1

2

n∑
i=1

(w̃i − wi)
2 + λ

n−1∑
i=1

(wi − wi+1)+

)
.

To solve this problem we use an algorithm proposed at [15].

6. Expert estimations concordance for the ordinal-scaled criteria

This section considers the case of the ordinal-scaled criteria. Write the ma-
trix X as the concatenation of its columns, X = [χ1, ...,χn]. In the case of
the ordinal criteria, the geometric shapes corresponding to the columns of X
are cones X1, ...,Xn. As described above, each cone is defined by the system of
linear inequalities,

Xj = {xj |Jm
j xj 6 0}, j = 1, ...,m,

with the m×m matrices Jm
j .
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Consider a linear model of the objects quality estimation. In the terms of
ordinal scales it means that the admissible set X of the object estimations ŷ is
a set consisting of the all possible sums of vectors,

X = {x| x = x1 + ...+ xn, x1 ∈ X1, ...,xn ∈ Xn}.

For the following consideration let us recall definition of the Minkowski sum.
The Minkowski sum of two subsets L1 and L2 of the linear space is a set L′

consisting of all possible sums of vectors from L1 and L2. Call an admissible set
for the linear model a Minkowski sum,

X = X1 + ...+ Xn.

To estimate vector of object qualities we construct an admissible set as the
Minkowski sum of the convex polyhedra X1, ...,Xn. To do this we use a method
from [13]. The proposed method computes a matrix of a system of linear in-
equalities describing the sum of the polyhedra. The description of this method
is given below.

Let two convex polyhedra X1 and X2 be described by the following system
of inequalities:

X1 = {x1|J1x1 6 b1}, X2 = {x2|J2x2 6 b2}.

The Minkowski sum of the polyhedra is the vector x satisfying the following
conditions: 

x− x1 − x2 = 0,

J1x1 6 b1,

J2x2 6 b2.

Transform the system replacing the variable x1 = x− x2:{
J1x− J2x2 6 b1,

J2x2 6 b2.
(10)

The following lemma describes the Minkowski sum of two polyhedra.

Lemma 5. x ∈ X if and only if it exists x2 satisfying (10).

This means that to find a vector x one must solve the system of linear
inequalities,

Cx2 6 d, C =

(
−J1

J2

)
, d =

(
b1 − J1x

b2

)
.

To solve this system we use the following version of the Minkowski-Farkas
lemma.

Lemma 6. Let J and b be a matrix and a vector. The system of linear in-
equalities Jx 6 b is solvable iff yb > 0 for any vector y satisfying the following
conditions:

y > 0, yJ = 0.
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In our case write the Minkowski-Farkas lemma as following,

∃x2 : Cx2 6 d ⇔ ∀z : CT z = 0, z > 0 → (d, z) > 0.

Let V be a fundamental system of solutions (FSS) for this case. Therefore

V =

(
V1

V2

)
,

where Vi is a FSS, corresponding to the matrix Ji. It follows that the condi-
tion (d, z) > 0 must be rewritten as

VT
1 (b1 − J1x) +VT

2 b2 > 0.

Denote
J = VT

1 J1, b = VT
1 b1 +VT

2 b2,

and obtain the parameters J,b of the system of inequalities describing the
Minkowski sum X1 + X2.

To find the non-negative FSS of the system with the matrix V we use a
method proposed in [13].

The solution of the concordance problem is the point ŷ nearest to the expert
estimation y0 such that ŷ ∈ X . Having constructed the set X , define the com-
puted object estimations as the projection PX (y) ∈ X satisfying the following
conditions:

ŷ = PX (y) = argmin
z∈X

∥y − z∥. (11)

The projection is unique due to the convexity of the set X . Fig. 10 illustrates a
projection of the vector y0 to the admissible set X .

X

y0

ŷ

y1

y2

y3

Figure 10: Projection of the point y0 to the cone X

Fig. 11 compares the method of ordinal expert data (9) with the method of
ordinal criteria (11). The x-axis shows the Chebyshev point estimation ŷCheb.
The y-axis shows the projections ŷCones to the admissible set X .
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Figure 11: Comparison of the method of the ordinal expert data with the method of ordinal
criteria

7. Computational experiment

Results for the real data. Table 2 shows estimations of the Nature Protected
Areas obtained by the four proposed methods. The results are comparable. The
specific method should be chosen according to some knowledge or assumptions
about the data structure.

Analysis of the algorithms accuracy. The results of four proposed algorithms
are demonstrated in the table 3. As the quality criterion we propose a cor-
relation coefficient between expert estimation of objects y0 and the computed
estimations ŷ. We use Pearson correlation coefficient, r(y0, ŷ), to measure the

Table 2: Integral quality estimations for the Nature Protected Areas

Object number ŷOLS ŷγ ŷCheb ŷCones

x1 1 2 1 1
x2 5 5 4 3
x3 6 3 2 2
x4 2 6 5 5
x5 3 1 6 6
x6 8 9 9 9
x7 4 4 3 4
x8 9 8 8 8
x9 7 7 7 7
x10 10 10 10 10

18



Table 3: Accuracy of the proposed algorithms

ŷOLS ŷγ ŷCheb ŷCones

Pearson, r 0.69 0.55 0.6 0.66
Kendall, τ 0.47 0.47 0.38 0.51

quality in the linear scales and we use Kendall correlation coefficient, τ(y0, ŷ),
to measure quality in the ordinal scales. Note that the estimation ŷ was com-
puted using Leave-One-Out method. Thus we can estimate a generalization
ability of the proposed algorithms.

The results show the object estimations ŷ computed by the four proposed
methods.

1. ŷOLS — estimations computed by the expert-statistical method (3),

2. ŷγ — estimations computed by the γ-concordance method (7),

3. ŷCheb — estimations computed by the Chebyshev point finding (9),

4. ŷCones — estimations computed by ordinal criteria method (11).

The results show that Pearson correlation has the maximum value for the OLS-
estimation, whereas Kendall correlation is maximum for the ordinal criteria
method.

Analysis of the algorithms stability. To analyse stability of the proposed algo-
rithms we disturb the elements of the matrix X. Consider the matrix X∆ =
X+∆, where ∆(i, j) ∼ N (0, σ). We change the standard deviation σ of the dis-
turbance from its minimum value σ = 0 to its maximum value σmax. Fig. (12)
shows how changes quality criteria for the estimations ŷ = f(ŵ,X∆). The
left figure shows the changing of Pearson correlation. For the non-disturbed
matrix X the expert-statistical method gives the best result but this result is
less stable. The most stable results are indicated with the green line (ordinal
criteria) and the black line (ordinal expert data).

Software implementation. The proposed methods were realized using MATLAB
language. The open access code of algorithms and the computational experiment
are located at [17].

The code consists of the two main modules. The module comparison.m

performs pairwise algorithms comparison. The results of this module are
illustrated at fig. (2), (11), (6). The module test_noise.m tests algo-
rithms (9), (7), (11), (3) precision and stability. The results of this module
are shown above in this section.

The input data structures X, y0, w0 are the design matrixX and the expert
estimations of the object qualities and of the criteria weights, respectively. This
data correspond to the table 1.
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Figure 12: Analysis of the algorithms stability for the disturbed matrix X

8. Conclusion

The paper presents the methods of objects integral quality estimation based
on expert estimations and measured data. Unsupervised and supervised meth-
ods are considered. The paper proposes the methods of the linear and ordinal
expert estimations concordance. The methods use a structure parameter defin-
ing expert preferences to the expert estimations of the objects versus the expert
estimations of the criteria weights. The paper presents the method of the stable
object estimations construction and the method of the ordinal-scaled objects in-
tegral quality estimation. The error analysis is performed. The integral quality
estimations are constructed for the Nature Protected Areas’ annual reports.

References

[1] V. Strijov, G. Granic, et al, Integral indicator of ecological impact of the
croatian thermal power plants, Energy 36 (2011) 4144–4149.

[2] A. Khurshid, H. Sahai, Scales of measurements: An introduction and a
selected bibliography, Quality and Quantity 27 (1993) 303–324.

[3] J. Fuernkranz, E. Huellermeier, Preference learning, Springer, 2011.

[4] V. F. Lopez, F. de la Prieta, M. Ogihara, D. D. Wong, A model for multi-
label classification and ranking of learning objects, Expert Systems with
Applications 39 (2012) 8878–8884.

[5] I. T. Jolliffe, Principal Component Analysis, Springer, 2002.

[6] D. Kim, B.-J. Yum, Collaborative filtering based on iterative principal
component analysis, Expert Systems with Applications 28 (2005) 823–830.

20



[7] S. Jullien-Ramasso, G. Mauris, P. B. L. Valet, A decision support system
for animated film selection based on a multi-criteria aggregation of referees
ordinal preferences, Expert Systems with Applications 39 (2012) 4250–
4257.

[8] S. R. Searle, Linear models, John Wiley and Sons, 1997.

[9] V. I. Danilov, A. I. Sotskov, Social Choice Mechanisms, Springer-Verlang,
2002.

[10] S. D. G., Mathematics and voting, Notices of the American Mathematical
Society (4/2008).

[11] H. M. Moshkovich, A. I. Mechitov, D. L. Olson, Rule induction in data
mining: effect of ordinal scales, Expert Systems with Applications 22 (2002)
303–311.

[12] E. Fogel, D. Halperin, Exact and efficient construction of minkowski sums
of convex polyhedra with applications, Computer-Aided Design 39 (2007)
929–940.

[13] M. Uhanov, Polygons sum construction algorithm, Bulletin of South Ural
State University, Series ”Mathematics, Physics, Chemistry” 1 (2001) 39–44.

[14] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University
Press, 2006.

[15] R. Tibshirani, H. Hoefling, R. Tibshirani, Nearly-isotonic regression, Tech-
nometrics 53 (2010) 54–61.

[16] H. Hoefling, A path algorithm for the fused lasso signal approximator,
Journal of Computational and Graphical Statistics 19 (2010) 984–1006.

[17] M. P. Kuznetsov, V. V. Strijov, Algorithms
of the integral quality estimation, 2013. URL:
http://svn.code.sf.net/p/mlalgorithms/code/PreferenceLearning/.

21




