Thematic classification for EURO/IFORS conference using expert model

Arsentiy Kuzmin, Alexander Aduenko, and Vadim Strijov

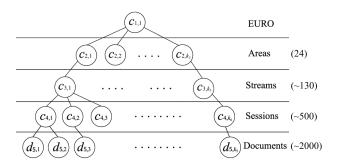
Moscow Institute of Physics and Technology Department of Control and Applied Mathematics

> EURO 2016, Poznan 05.06.2016

Construct a decision support system to assist the program committee and stream organizers make the forthcoming conference program

The goal:

• to construct a thematic model of the conference


There given:

- historical expert thematic models of the previous conferences
- submitted abstracts for the forthcoming conference

The main idea:

- to calculate the similarity of a new abstract and each Stream,
- to show the most similar Streams to the Experts

EURO/IFORS conference hierarchical model

- A group of experts is responsible for an Area,
- participants submit their Abstracts to the collection,
- 3 the experts distribute the Abstracts over the Streams,
- 4 the Abstracts are organized into the Sessions.

Document-vector representation

Let $W = \{w_1, \dots, w_n\}$ be the terms dictionary of the collection.

There exists two different approaches to represent a word:

Vocabulary vector

$$C(w_j) \in \mathbb{R}^{|W|}, |W| \approx 10^4$$

$$C(w_j) = e(j) = [\dots 0 \ 1 \ 0 \dots]^T$$

$$||C(w_j) - C(w_i)|| = 2 \cdot I(i \neq j)$$

Distance between words "logistic" and "transport" equals distance between "logistic" and "finance".

Document-vector representation: $\mathbf{x}_d = \sum_{w_i \in d} C(w_j)$

word2vec, gloVec

$$C(w_i) \in \mathbb{R}^K$$
, $|W| \approx 10^2$

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

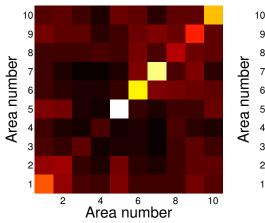
$$||C(w_j) - C(w_i)|| \in \mathbb{R}$$

Words with similar contexts are closer, so "logistic" \approx "transport", but "logistic" \neq "finance".

Document-vector representation: doc2vec, convolutional NN, recursive NN.

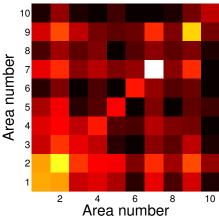
The clustering quality function

Suppose F_0 is a mean intra-cluster similarity: $F_0 = \frac{1}{k_\ell} \sum_{i=1}^{\kappa_\ell} S(c_{\ell,i}, c_{\ell,i}),$


and F_1 is a mean inter-cluster similarity: $F_1 = \frac{2}{k_\ell(k_\ell-1)} \sum_{i < j} S(c_{\ell,i}, \ c_{\ell,j})$

Clustering quality criterion

$$F = \frac{F_0}{F_1} o \max$$


The expert model is the origin for the algorithmic thematic model.

Document representation comparison

Document vector - sum of it's word vectors $e(w_i)$.

$$F0/F1 = 1.98$$

Document vector - calculated with doc2vec approach.

$$F0/F1 = 1.31$$

Similarity function

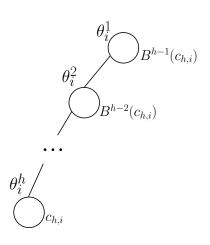
Define the similarity function $s(\cdot, \cdot)$ between documents x_i and x_j as:

$$s(\mathbf{x}_i, \ \mathbf{x}_j) = \frac{\mathbf{x}_i^\mathsf{T} \mathbf{\Lambda} \mathbf{x}_j}{\sqrt{\mathbf{x}_i^\mathsf{T} \mathbf{\Lambda} \mathbf{x}_i} \sqrt{\mathbf{x}_j^\mathsf{T} \mathbf{\Lambda} \mathbf{x}_j}} = \mathbf{x}_i^\mathsf{T} \mathbf{\Lambda} \mathbf{x}_j, \ \text{normalization:} \ \ \mathbf{x}_s \mapsto \frac{\mathbf{x}_s}{\sqrt{\mathbf{x}_s^\mathsf{T} \mathbf{\Lambda} \mathbf{x}_s}},$$

where $\Lambda = \text{diag}\{\lambda_{1,1}, \ldots, \lambda_{n,n}\}$ is a term-importance matrix.

Define the similarity function $s(\cdot,\cdot)$ between the document \mathbf{x}_i and the cluster $c_{\ell,j}$ on the ℓ hierarchy level as:

$$s(\mathbf{x}_i, c_{\ell,j}) = \mathbf{x}^\mathsf{T} \Lambda \overline{\mathbf{x}}_{\ell,i},$$


where $\overline{\mathbf{x}}_{\ell,j}$ is the mean vector of the cluster $c_{\ell,j}$.

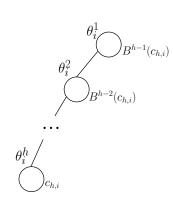
Hierarchical similarity function

Similarity between document and cluster of the *h* level

$$s(\mathbf{x}, c_{h,i}) = \sum_{j=0}^{h-1} \theta_i^{h-j} s(\mathbf{x}, B^j(c_{h,i})),$$

where θ_i^{h-j} is the weights parameter of the level h-j for the cluster $c_{h,i}$, and B^j is the operator of the precedence that associate cluster $c_{h,i}$ with its predecessor on the level j.

Optimize weight parameters heta


Find optimal parameters θ_i given expert hierarchy:

$$\boldsymbol{\theta}_i^* = \operatorname*{arg\,max}_{\boldsymbol{\theta}_i} \sum_{\mathbf{x} \in c_{h,i}} \sum_{j=0}^{h-1} \theta_i^{h-j} s\big(\mathbf{x}, \ B^j(c_{h,i})\big) + \mu \sum_{j=1}^h \left(\theta_i^j - \frac{1}{h}\right)^2,$$

$$\sum_{j=1}^h \theta_i^j = 1, \quad \theta_i^j \ge 0, \quad j \in \{1 \dots h\}.$$

Iterative procedure:

- find optimal Λ with fixed θ_i to maximize similarity $s(\mathbf{x}, B^j(c_{h,i}))$ (stay tuned);
- find optimal θ_i using fixed Λ and similarities;
- stop when $\Delta \theta_i$ and $\Delta \Lambda$ for consecutive iterations are small.

Return for a new document all clusters sorted by similarity in descending order instead of the most similar one

Definition

Let $q \in S^{k_h}$ be the permutation of the level h clusters. The clusters in this permutation are sorted by the similarity to an object x in the descending order, k_h is the clusters quantity.

Example:
$$q = \{3, 1, ..., 6\}$$
.

Definition

Let $R: \mathbb{R}^n \to S^{k_h}$ be the relevance operator. It maps the document $\mathbf{x} \in \mathbb{R}^n$ to the permutation q.

Definition

Let $pos(q, j): S^{k_h} \times \{1, 2, ..., k_h\} \rightarrow \{1, 2, ..., k_h\}$ be the position function. It returns the position of the given number in the permutation.

Example:
$$pos(q, 1) = 2$$
.

Quality criteria Q(R) and AUCH(R)

Q(R) quality criterion

Denote Q(R) by the average position of the expert cluster $z_{j,h}$ in the permutation $R(\mathbf{x}_j)$:

$$Q(R) = \frac{1}{|D|} \sum_{j=1}^{|D|} pos(R(\mathbf{x}_j), z_{j,h}).$$

AUCH(R) quality criteria

 $\mathrm{AUCH}(R) \in [0, 1]$ is the area under the top curve for a histogram $\#\{\mathrm{pos}(R(\mathbf{x}_j), z_{j,h}) \leq i\}$, where $i \in [1, k_h]$.

$$AUCH(R) = \sum_{i=1}^{k_L} \frac{\#\{pos(R(\mathbf{x}_j), z_{j,h}) \leq i\}}{k_h|D|}.$$

Optimize Λ using the expert thematic model

$$\Lambda^* = \arg\min_{\mathbf{A}} Q(R_{SIM}, \mathbf{X}).$$

Terms significance

Denote by $\mathbf{p}_{\ell,j}$ the vector of j-th components of cluster vectors $\bar{\mathbf{x}}_{\ell,i}$ of the level ℓ .

$$\mathbf{p}_{\ell,j} = \left[\mathbf{ar{x}}_{\ell,1,j}, \ \dots, \ \mathbf{ar{x}}_{\ell,k_{\ell},j}
ight]^{\mathsf{T}}, \quad \mathbf{p}_{\ell,j} \mapsto rac{\mathbf{p}_{\ell,j}}{\sum_{i=1}^{k_{\ell}} p_{\ell,i,j}}$$

The word entropy

Define the entropy $I_{\ell}(w_j)$ of the word w_j for hierarchy level ℓ as:

$$I_{\ell}(w_j) = \sum_{i=1}^{\kappa_{\ell}} -p_{\ell,i,j} \log(p_{\ell,i,j}).$$

Term w_j significance according to its entropy

$$\lambda_j = 1 + \alpha_\ell \log(1 + I_\ell(w_j)).$$

Optimization using the collection with the expert model

$$\alpha_\ell^* = \operatorname*{arg\,min}_{\alpha_\ell} \mathit{Q}(\mathit{R}).$$

The documents collection: EURO abstracts

The purpose of the experiment

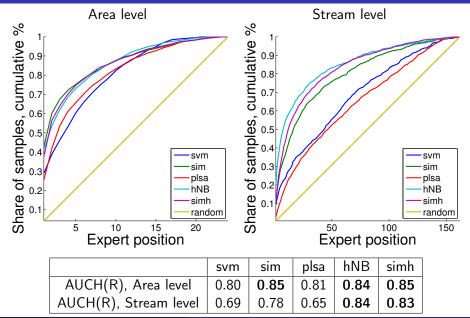
Construct a thematic model of the conference EURO 2013

The collection D^1 :

- EURO 2010, |D| = 1663, 26 Areas, 113 Streams.
- EURO 2012, |D| = 1342, 26 Areas, 141 Streams.

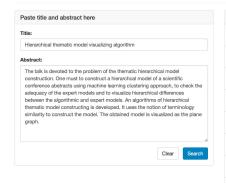
The collection D^2 :

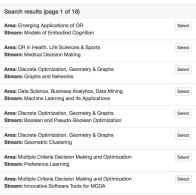
• EURO 2013, |D| = 2313, 24 Areas, 137 Streams.

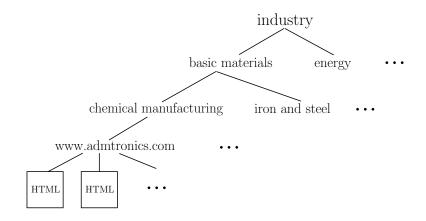

We matched the Areas and the Streams from all collections: The unified structure has 24 Areas. 178 Streams.

15 out of 178 streams are present only in the EURO 2013.

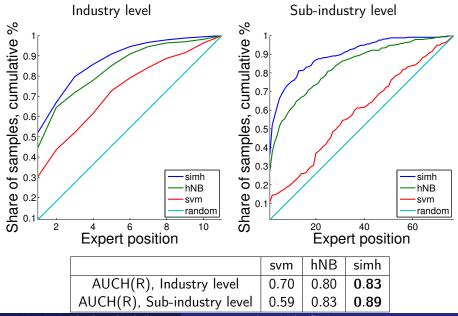
Size of the expert dictionary:


• |W| = 1675 terms.


Quality comparison, EURO abstracts


Realization

Conference program validation for EURO/INFORMS abstract collection



The documents collection: industry sector web sites

- Collection: |D| = 1036 web sites classified by experts into 11 industries and 78 sub-industries.
- Dictionary: |W| = 18000 terms.
- Preprocessing: combine all web pages of a site, remove all html-tags

Quality comparison, Industry sector web sites

Conclusion

- The weighted hierarchical similarity function is proposed.
- The entropy-based method to calculate terms significance matrix Λ and optimize level weights θ is proposed.
- The relevance operator is proposed.
- The hierarchical similarity approach shows the same quality as the strongest base line with the expert dictionary.
- The hierarchical similarity approach shows significantly better quality with the automatically created dictionary.