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Abstract

This paper investigates an approach to construct new ranking models for Information Retrieval.

The IR ranking model depends on the document description. It includes the term frequency and

document frequency. The model ranks documents upon a user request. The quality of the model

is defined by the difference between the documents, which experts assess as relative to the request,

and the ranked ones. To boost the model quality a modified genetic algorithm was developed.

It generates models as superpositions of primitive functions and selects the best according to the

quality criterion. The main impact of the research if the new technique to avoid stagnation and to

control structural complexity of the consequently generated models. To solve problems of stagnation

and complexity, a new criterion of model selection was introduced. It uses structural metric and

penalty functions, which are defined in space of generated superpositions. To show that the newly

discovered models outperform the other state-of-the-art IR scoring models the authors perform a

computational experiment on TREC datasets. It shows that the resulted algorithm is significantly

faster than the exhaustive one. It constructs better ranking models according to the MAP criterion.

The obtained models are much simpler than the models, which were constructed with alternative

approaches. The proposed technique is significant for developing the information retrieval systems

based on expert assessments of the query-document relevance.
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1. Introduction1

Information retrieval is finding relevant documents, which satisfy an information need, from2

within large collections [1]. To retrieve documents relevant to a query, one needs a rank estimation3

procedure called ranking model. It is defined on pairs document-query . For each pair it returns4

relevance of the document to the query. [2] defines IR ranking models as functions of two basic5

features of these pairs: term frequency (tf ) and document frequency (idf ). In this paper ranking6

models are constructed considered as mathematical functions defined on tf-idf features. Instead of7

enlarging the set of features to provide better performance [3], current paper use the same tf-idf8

features to make further comparison consistent.9

The ranking models in [4, 5, 6, 7, 8] are derived on some theoretical assumptions. These10

assumptions This allow to build ranking models without an IR collection, but these assumptions11

are not often met. For example, the derived ranking models are not optimal according to mean12

average precision [1] on TREC collections [2]. Moreover, the quality of these models significantly13

differs on various the collections [2].14

High-performing ranking models are also discovered by automatic procedures. The paper [2]15

exhaustively explores a set of IR ranking models represented as superpositions of expert-given16

grammar elements. The grammar is an expert-given set of primitive mathematical functions, where17

variables are tf-idf features [9]. The exhaustive algorithm explores the set of superpositions, which18

consists of at most 8 grammar elements. The best explored ranking functions in [2] are better in19

average on TREC collections than ones in [4, 5, 6, 7, 8]. Moreover, these functions are guaranteed to20

have simple structure. However, this algorithm has high computational complexity [2]. Therefore,21

an exploration of more complex superpositions is an intractable problem.22

Another approaches to improve IR expert systems include various genetic algorithms: search23

for an optimal document indexing [10, 11], clustering documents according to their relevance to24

queries [12, 13], tuning parameters of queries [14, 15], facilitate automatic topic selections [16],25

search for key words in documents [17] and optimal coefficients of a linear superposition of ranking26

models [18, 19]. Genetic algorithms are applied to select features in image retrieval and classifica-27

tion [20]. Genetic algorithms are used to generate ranking functions represented as superpositions28

of grammar elements [21, 22, 23]. These procedures significantly extend the set of ranking super-29

positions considered in [2]. However, the basic algorithms in [21, 22] produce superpositions with30

significant structural complexity after 30-40 iterations of mutations and crossovers [23]. The basic31
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algorithms do not control the structural complexity of generated superpositions and do not solve a32

problem of evolutionary stagnation, when a population stops to change.33

Strengths Weaknesses

[Fan et al. 2004, 2000], [22, 21]

Large feasible set of ranking functions

Fast convergence to a local optimum

Complicated final superpositions

Does not provide global optimum in the feasi-

ble set of functions

Have not been tested on different datasets to

show uniform improvement on them

[Goswami 2014], [2]

Provides global optimum with respect to the

feasible set

Compact final ranking functions

Have been tested on different datasets

and uniform improvement over existing ap-

proaches was shown

Small feasible set of ranking functions

[BM25]

Theoretically justified

Simple and compact explicit expression

Is not uniformly good over different datasets

[The proposed model generation algorithm ]

Large feasible set of ranking functions

Fast convergence to a local optimum

Compact final ranking functions

Have been tested on different datasets to show

uniform improvement on them

Does not provide global optimum in the feasi-

ble set of functions

Table 1: Comparison of CPU time required by structural metrics

The problem of evolutionary stagnation appears when a majority of stored superpositions have34

similar structure and high quality. Next crossover operations constructs superpositions, which are35

similar to the stored ones. The mutation operation constructs a superposition, which is unlikely36
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to have as high quality as the stored superpositions. This superposition highly probably will be37

eliminated. Therefore the population will pass to the next iteration without changes. The genetic38

algorithm stops actual generation.39

To outperform the ranking functions found in [2], one needs to extend the set of superposi-40

tions considered there. To perform it, a modified genetic algorithm is proposed. First, it detects41

evolutionary stagnation and replaces the worst stored superpositions with random ones. This de-42

tection is implemented with a structural metric on superpositions. Regularizers solve the problem43

of overfitting. They penalize the excessive structural complexity of superpositions. The paper an-44

alyzes various pairs regularizer-metric and chooses the pair providing a selection of better ranking45

superpositions. All strengths and weakness of compared approaches are summarized in Table 1.46

The paper [2] uses TREC collections to test ranking functions. To make the comparison47

of approaches consistent, the present paper also use these collections. The collection TREC-748

(trec.nist.gov) is used as the train dataset to evaluate quality of generated superpositions. The49

collections TREC-5, TREC-6, TREC-8 are used as test datasets to test selected superpositions.50

2. Problem statement51

There given a collection C consisting of documents {di}|C|i=1 and queries Q = {qj}|Q|j=1. For each

query q ∈ Q some documents Cq from C are ranked by experts. These ranks g are binary

g : Q× Cq → Y = {0, 1},

where 1 corresponds to relevant documents and 0 to irrelevant.52

To approximate g, superpositions of grammar elements are generated. The grammar G is a

set {g1, . . . , gm, xdw, yw}, where each gi stands for an mathematical function and xdw, yw stand for

variables. These variables are tf-idf features of document-query pair (d, q). Feature xdw is a frequency

of the word w ∈ q in d, feature yw is a frequency of w in C:

xdw = twd log

(
1 +

la
ld

)
, yw =

Nw

|C|
, (1)

where Nw is the number of documents from C containing w, twd is the frequency of w in d, ld is the53

number of words in d (the size of a document d), la is an average size of documents in C. Each54

superposition f of grammar elements is stored as a directed labeled tree Tf with vertices labeled55

by elements from G. The set of these superpositions is defined as F.56

4



The value of f on a pair (d, q) is defined as a sum of its values on (d,w), where w is a word

from q:

f(d, q) =
∑
w∈q

f(xdw, yw).

The superposition f ranks the documents for each q. The quality of f is the mean average preci-

sion [1]

MAP(f, C,Q) =
1

|Q|

Q∑
q=1

AveP(f, q),

where

AveP(f, q) =

∑|Cq|
k=1

(
Prec(k)× g(k)

)∑|Cq|
k=1 Rel(k)

, Prec(k) =

∑k
s=1 g(s)

k
,

where g(k) ∈ {0, 1} is a relevance of the k-th document from C.57

This paper aims at finding the superposition f , which maximizes the following quality function58

f∗ = argmax
f∈F

S(f, C,Q), S(f, C,Q) = MAP(f, C,Q)− R(f), (2)

where R is a regularizer controlling the structural complexity of f .59

The exhaustive algorithm in [2] generates random ranking superpositions consisting at most of60

8 elements of the grammar G. Let F0 be the set of the best superpositions selected in [2]. The61

solution f∗ is compared with the superpositions from F0 with respect to to MAP.62

3. Generation of superpositions63

IR ranking functions are superpositions of expert-given primitive functions. These superposi-

tions are generated by the genetic algorithm. It uses an expertly given grammar G and constructs

superpositions of its elements. On each iteration it keeps stores a population of the best selected

superpositions. To update them and pass to the next iteration, it generates new superpositions

with use of the stored ones. Since the superpositions are represented as trees, the algorithm applies

crossover c(f, h) and mutation m(f) operations to the stored trees

c(f, h) : F× F→ F, m(f) : F→ F,

Definition 1. Crossover operation c(f, h) : F×F→ F produces a new superpositions from given f64

and h. This operation represents f and h as trees, uniformly selected a subtree for each of them65

and swaps these subtrees.66
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Algorithm 1 Basic genetic algorithm

Require: grammar G, required value α of MAP

Ensure: superposition f of elements from G with MAP ≤ α;

create a set of initial, random superpositions M0,

repeat

• crossover random pairs of stored superpositions M,

• mutate random superpositions from the population M,

• consider these generated superpositions and the ones stored in M. Select the best of

them according to MAP,

• store the best generated superpositions in the population M and pass it to the next

iteration,

until the required value of MAP is reached;

Here is an example of crossover on two superpositions, where randomly selected subtrees are in

bold.

f(x, y) = exp(x) + ln(xy), h(x, y) =
√
x+ (x+y)

↓67

f ′(x, y) = exp(x) + (x+y), h′(x, y) =
√
x+ ln(x · y),

The new superpositions are formed by swapping of these subtrees.68

Definition 2. Mutation m(f) uniformly selects a subtree from f and replace it with another random69

superposition. Mutation produces one new superposition.70

Here is an example of mutation on a superposition71

f(x, y) =
√
x+ ln(x · y)→ f ′(x, y) =

√
x+ exp(y).

Definition 3. Size |T | of a tree T is the number of its vertices.72

Restrict the size of substituting tree. If mutation replaces a subtree T with a tree T ′, then bound73

the size of T ′ by c|T |, where c is a constant. This restriction allows us to explore the set F more74
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gradually. The reason is to prevent the algorithm from instantaneous moving toward complicated75

superpositions if the stored population consists mainly of simple structured superpositions. Now76

the genetic algorithm is described in Algorithm 1. It will be referred as basic genetic algorithm.77

4. Metric properties of basic genetic algorithm78

To analyze the genetic algorithm, introduce a structural metric µ(T, T ′). It is defined on pairs

of directed labeled trees. Therefore, it is defined on pairs of elements from F as well.

µ(f, f ′) = µ(Tf , T
′
f ).

This structural metric satisfies the following conditions79

1) µ(f, f) = 0, µ(f, f ′) > 0 if f 6= f ′ (non-negativity),80

2) µ(f, f ′) = µ(f ′, f) (symmetry),81

3) µ(f, f ′) ≤ µ(f, f ′′) + µ(f ′′, f ′) (triangle inequality). enumerate82

For r > 0 define the r-neighborhood Ur(f) of superposition f as a set of superpositions in F

that are at distance less than r from f

Ur(f) = {f ′ ∈ F : µ
(
f, f ′

)
< r}.

To associate the structural distance between superpositions with a distance on their values,

introduce an extra condition. Claim that the functions, lying in one structural neighborhood,

should rank the documents mainly similarly. Define a distance function η on the ranks of IR

ranking functions:

η(f, f ′) =
1

|C|
(
|C| − 1

) ∑
dj ,dk∈C

[f(dj) < f(dk)][f ′(dj) > f ′(dk)],

where [A] is the indicator of event A. It is related with Kendall rank correlation coefficient by

the equation:

τ(f, f ′) = 1− 2η(f, f ′).

The function η is the normalized number of inversions necessary to transform one list with83

ranks to the other. Therefore η(f, f ′) is a distance on the values of the superpositions. Call the84

neighborhood Vr(f) = {f ′ : η(f, f ′) < r} the value-neighborhood.85

Introduce a condition for µ to detect evolutionary stagnation of the genetic algorithm enumerate86
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Ur(f)
Vr(f)

α(M)
r

Figure 1: Illustration of supposed relation between Ur(f) and Vr(f).

4)

α(M) = ν

(
[µ(f, f ′) ≤ α1]⇒ [η(f, f ′) ≤ α2]

∣∣f, f ′ ∈M

)
≥ 1− ε, (3)

where α1, α2, ε are some constants and ν
(
A
)

is the frequency of event A.87

It claims that structurally similar functions rank documents mainly similarly. Figure 1 shows sup-88

posed relation between structural neighborhood Ur(f) and value-neighborhood Vr(f). Condition (3)89

states that the area of the black region on Figure 1 should be relatively small.90

Let fopt be a superposition of high quality according to S. If µ satisfies condition (3), then the91

superpositions in the neighborhood Ur (fopt) will also have high quality. Suppose that fopt 6= f∗ (2).92

It means that the optimal ranking superposition f∗ is not found yet. If all superpositions of a stored93

population Mi lye in Ur (fopt), then they will rarely leave Ur (fopt) on the next iterations, since94

crossovers produce superpositions mainly from Ur (fopt) and mutations produce superpositions95

mainly of lower quality. Therefore, the optimal function f∗ will frequently become unreachable for96

the genetic algorithm, as consequence of this evolutionary stagnation.97

Definition 4. Evolutionary stagnation is a situation in a genetic algorithm, when stored superpo-98

sitions are pairwise similar. The generated algorithm stops generation of principally new superpo-99

sitions and the population mainly does not change from iteration to iteration.100

Definition 5. Radius r(M) of a population M is the minimum size of r-neighborhood with center

in f ∈ M, which accommodates M. It shows how are the functions from M scattered across the

set F.

r(M) = argmin
r>0

{∃f ∈ F ∀f ′ ∈M : f ′ ∈ Ur(f)} = min
f∈M

max
f ′∈M

{µf ′, f}. (4)
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Detect evolutionary stagnation with structural metric µ. Lets consider a population M stored by101

the genetic algorithm. If the genetic algorithm stagnates, then r(M) is relatively small. Oppositely,102

if the population is diverse, then the r(M) is big. Therefore evolutionary stagnation could be103

detected with the radius r(M). However, it is an intractable problem to find the exact value104

of r(M). Therefore, propose an empirical estimation of this radius.105

Definition 6. Structural complexity |f | of superposition f is the number of grammar elements,106

which f consists of.107

Definition 7. Empirical radius re(M) of is a normalized average distance between superpositions

in M.

re(M) =

∑
f,f ′∈M

µi(f, f
′)

|M|
∑

f∈M
|fj |

. (5)

This estimation is used to detect evolutionary stagnation of the genetic algorithm. If re(M) is108

less than a threshhold r(M) < Thresh, eliminate the worst superpositions from M and replace them109

with random superpositions of the same structural complexity. This procedure increases the radius110

of M and diversifies it. Therefore, the present aim of this paper is to select a proper structural111

metric µ, which satisfies all mentioned conditions.112

5. Structural metrics113

Each ranking superposition f ∈ F is represented as directed tree Tf , which vertices are labeled114

by elements from grammar G. Structural metrics are defined on pairs of such trees. It automatically115

defines them on pairs of superpositions. This paper analyzes three metrics.116

5.1. Similarity according to an isomorphism117

The first structural metric µ1 uses a definition of common subgraph of two graphs [24].118

Definition 8. Two graphs G1 and G2 are called isomorphic if there is an edge-preserving bijection119

between their vertex sets. The edge-preserving property states that two vertices are adjacent iff their120

images are adjacent.121
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Definition 9. Two trees Ti, Tj have a common subtree T if each of them has a subtree isomorphic122

to T .123

Definition 10. A size |T | of a tree T is the number of its vertices.124

Definition 11. The largest common subtree Tij of two directed labeled trees Ti and Tj is the tree125

of the largest size among all common subtrees of Ti and Tj.126

The distance between Ti and Tj is calculated by the following formula

µ1(Ti, Tj) = |Ti|+ |Tj | − 2|Tij |.

The paper [24] defines µ1 likewise on pairs of graphs and proves that µ1 satisfies 1-3 conditions if127

the graph size is defined as the number of its edges. For a tree the number of its vertices is equal128

to the number of its edges plus 1. Therefore, the results mentioned in [24] are applicable for our129

case and µ1 satisfies 1-3 conditions. The last 4th condition is checked empirically.130

5.2. Similarity according to edit distance131

As before, a superposition is represented by a directed labeled tree. Represent a tree as a string132

of characters. This string is constructed as a sequence of labels of vertices written in pre-order [25].133

Now define a structural metric µ2 on pairs of character strings. It automatically defines the134

structural metric on pairs of superpositions. As the arities of functions from G are known, each135

superposition could be reconstructed from its string representation. Therefore, there is no two136

character strings corresponding to one superposition of primitive functions. The structural metric µ2137

is called a Levenshtein distance.138

Definition 12. The Levenshtein distance between two character strings is the minimum number of139

single-character edits (insertions, deletions and rewritings) required to change one string into the140

other.141

Each edit distance satisfies the conditions 1-3. The metric µ2 also satisfies them in the case142

when it is defined on pairs of superpositions, because the string representation is bijective. The last143

4th condition is checked empirically.144
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The third structural metric µ3 is a Levenshtein distance defined on pairs of directed labeled145

trees.146

Definition 13. The Levenshtein distance between two trees is the minimum number of edits (edge147

insertions, edge deletions and vertex relabeling) required to change one tree into the other.148

The structural metric µ3 satisfies the metric axioms [26]. The last 4th condition is checked149

empirically.150

6. Regularizers151

To approximate noisy data accurately, the genetic algorithm generate complex superpositions152

after some iterations. To prevent this overfitting, it should control the structural complexity of153

superpositions by a regularizer. The regularizer restricts a set F′ ⊂ F of superpositions reachable154

by the genetic algorithm. Search for a regularizer, which makes the set F′ sufficiently rich to155

find there a proper approximating superposition and sufficiently small to avoid overfitting of the156

algorithm. Lets consider the structural parameters of directed labeled trees157

1) The size of a tree, see Definition 3.158

2) The number of leaves in a tree.159

3) The height of a tree.160

A restriction of these parameters makes complex superpositions unreachable for the genetic algo-161

rithm. This paper analyzes three regularizers built on these structural parameters. To penalize162

accurate superpositions less, all of these regularizers are proportional to MAP.163

1) R1(f) = p ·MAP(f) · I(|f | < CT),164

where CT is a threshhold for the structural complexity, p is a penalty parameter. The reg-165

ularizer R1 penalizes those superpositions, which have structural complexity larger than the166

threshhold CT.167

2) R2(f) = p ·MAP(f) · I(|f | ≥ CT) · (|f | − CT),168
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where C is a positive parameter. The regularizer R2 penalizes the superpositions having struc-169

tural complexity larger than the threshhold CT. And the more complex a superposition, the170

higher the penalty.171

3) R3(f) = p ·MAP(f) · |f |∗ · log(|f |+ 1),172

The regularizer R3 treats a structural complexity of a superposition as the number of leaves |f |∗173

of its tree multiplied by the estimation log(|f |+ 1) of its height.174

All parameters from the definitions should be set empirically. To set them one needs to follow the175

principle mentioned above: the set F′ should be sufficiently rich to find there a proper approximating176

superposition and sufficiently small to avoid overfitting of the genetic algorithm.177

Select proper structural metric and regularizer to modify the basic genetic algorithm. The178

modified version solves the problems of overfitting and evolutionary stagnation. This version is179

described in Algorithm 2.180

7. Computational experiment181

The main goal of this paper is to generate superpositions outperforming the ones from F0182

selected in [2]. These functions, in turn, outperform known ranking models BM25, LGD, LMDIR.183

Therefore, if the modified genetic algorithm succeeds in outperforming functions from F0, it will184

also outperform BM25, LGD, LMDIR as well. Now describe the data used to estimate the quality185

of the generated superpositions.186

Data. Authors in [2] estimate the quality ranking functions on TRECs. To make the comparison187

with F0 consistent, use TRECS as well. Perform the computational experiment on Trec-5, Trec-188

6, Trec-7, Trec-8 (trec.nist.gov). The Text REtrieval Conference (TREC), co-sponsored by the189

National Institute of Standards and Technology (NIST) and U.S. Department of Defense, was190

started in 1992 as part of the TIPSTER Text program. For each TREC, National Institute of191

Standards and Technology (NIST) provides a test set of documents and questions. Participants192

run their own retrieval systems on the data, and return to NIST a list of the retrieved top-ranked193
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Algorithm 2 Modified genetic algorithm

Require: grammar G, required value α of MAP

Ensure: superposition f of elements from G with MAP ≤ α;

create a set of initial, random superpositions M0,

repeat

• crossover random pairs of stored superpositions M,

• mutate random superpositions from the population M,

• consider these generated superpositions and the ones stored in M. Select the best of

them according to the quality function S (2),

• store the best superpositions in a population M′ and pass it to the next iteration,

• if de(M
′) < Thresh then

evolutionary stagnation is detected and we replace the worst superpositions from the

population M′ by random superpositions,

• end if

• M = M′.

until the required value of MAP is reached;
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Figure 2: Scheme of data preprocessing steps.

documents. NIST pools the individual results, judges the retrieved documents for correctness, and194

evaluates the results. Thus each TREC consists of a collection of documents, user queries and195

judgments for a subset of a collection Each TREC is associated with this triplet. Each triplet has196

a collection of nearly 500 000 documents. 50 queries to the collection and 2000 judgments for each197

query in average. The number specified after the name ¡¡Trec¿¿ denotes the year of the creation of198

the TREC.199

7.1. Data processing200

As TREC collections are large, calculations of the variables xdw and yw (1) are computationally201

expensive. To speed up the calculations, one should perform data preprocessing. Terrier IR Plat-202

form v3.6 (terrier.org) perform necessary steps for this preprocessing. It provides flexible processing203

of terms through a pipeline of components (stopwords removing, stemmers, etc.). The platform204

indexes a collection of documents. The preprocessing steps include stemming using Porter stem-205

mer and removing stop-words using the stopword list. Second, Terrier performs a query expansion206

techniques and retrieves required documents efficiently. It processes the data stored in Trec5-8207

and returns the matrices of features xdw and yw for each word w ∈ q and each document from the208

collection having this word.209

The algorithm of primary data preprocessing makes the following steps, see Figure 2.210

1. Split documents on tokens. Reduce each token to its stem form by Porter stemmer [4].211

2. Filter the set of stemmed tokens is according to the stopwords list.212
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Figure 3: Scheme of query processing steps.

3. The collection is represented as an index document-token.213

4. Create a lexicon-class, which represents the list of terms (dictionary) in the index.214

After the preliminary steps are performed, one can calculate the variables xdw and yw for each215

query q, see Figure 3.216

1. Split q on tokens. Process each token by the stemmer and filter the resulted set by the217

stopword list.218

2. Lexicon-class collects statistics about the tokens. It calculates the feature yw.219

3. Eliminate tokens with high value of yw as uninformative.220

4. For each token the platform retrieves the information about its second feature xdw from the221

index.222

The described scheme is used by the modified genetic algorithm to estimate the quality of a223

superposition. Now describe the system performing this modified genetic algorithm. This system224

generates superpositions of primitive functions.225

7.2. Generation system226

Algorithm 2 gives the description of the modified genetic algorithm used for generation of ranking227

superpositions. These superpositions are constructed from the elements of G = {xdw, yw,+,−,×, ·· , log, exp,
√
·}.228
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On each iteration the algorithm stores 20 best generated superpositions. To create new super-229

positions, it performs 10 crossovers and 10 mutations on the stored ones. Then it selects 20230

best according to (2) and pass to the next iteration. This paper terminates the generation af-231

ter 300 iterations. The selected superpositions are compared with the ones from F0 To use232

this algorithm, one must select proper regularizer and structural metric. The code for this sys-233

tem is found in https://github.com/KuluAndrej/Generation-of-simple-structured-IR-functions-by-234

genetic-algorithm-without-stagnation.235

7.3. Selection of regularizer and structural metric236

This paper analyzes three metrics and three regularizers defined above with respect to the genetic237

algorithm. There are 9 combinations of these metrics and regularizers. Selects the pair, which238

provides better generation of superpositions both in terms of structural diversity and prediction239

accuracy. The selected pair is used by the modified genetic algorithm to generate an optimal ranking240

superposition.241

Table 2 shows a computational efficiency of calculation of different metrics with respect to242

different regularizers. There are 9 possible pairs metric-regularizer. The modified genetic algorithm243

is launched 100 times for each pair. The CPU time required to calculate all values of a metric244

is averaged over these 100 launches and 300 iterations for each launch. Table 2 shows that µ2245

is uniformly easiest to calculate. At the same time, µ1 is uniformly hardest to calculate. This246

efficiency is considered in the selection. Now analyze the pairs with respect to the generation of247

superpositions.248

First, analyze the modified genetic algorithm without regularizers. All measured values are aver-249

aged over 100 launches, see Figure 4. On the last 300-th iteration the average structural complexity250

of superpositions in the population is more than 40. Figure 4 shows slow trend to evolutionary stag-251

nation. The reason is that structural complexity of the generated superpositions grows dramatically252

with the iteration number. It makes the stored superpositions sufficiently diverse. Therefore during253

the whole evolution the empirical diameter de of the stored population is large. However, the gener-254

ated superpositions are significantly overfitted and should be penalized for the excessive structural255
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complexity.256

Regularizer µ1 µ2 µ3

R1 11.52 1.84 4.54

R2 6.7876 0.9347 1.5666

R3 7.63 1.05 1.87

Table 2: Comparison of CPU time required by structural metrics

Now let us analyze 3 metrics with presence of a regularizer. For each pair metric-regularizer257

plot the empirical diameter de depending on the number of iteration. Figures 5, 6, 7 also shows the258

average structural complexity la of stored superpositions. It allows to make inferences about the259

presence of overfitting.260

Note that the empirical diameter d(M) calculated with µ1 remains approximately unchanged261

during the whole evolution, see Figures 5, 6, 7. This particular feature does not allow to detect262

evolutionary stagnation in proper time. The actual start of evolutionary stagnation can not be263

denoted with µ1. Moreover, calculation of µ1 is computationally inefficient comparing with µ2264

and µ3, see Table 2. These reasons lead to elimination of µ1 from the further analysis.265

Two other metrics µ2 and µ3 provide almost equal values of d(M), see Figures 5, 6, 7. The266

relative difference in these values is under 5% for all variants of used regularizer. Therefore, without267

loss of generality, select the structural metric µ2 as more efficiently calculated, see Table 2.268

The first regularizer R1 is too strict, see Figure 5. The algorithm falls into evolutionary stag-269

nation on the first iterations, because the set of reachable superpositions F′ is small. The similar270

situation is observed for the second regularizerR2, see Figure 6. The algorithm does not immediately271

fall into evolutionary stagnation. The stored superpositions are updated up to the 300-th iteration.272

However, the empirical diameter d(M) significantly decreases after 30-40 iterations, see Figure 6.273

It means that although the stored superpositions are being updated throughout the evolution, they274

have mainly similar structures. These reasons lead us to the use of the third regularizer R3. The275

value of the empirical diameter d(M) decreases smoothly with R3, see Figure 7. It allows to have276

enough iterations to learn the structure of optimal superposition and detect evolutionary stagna-277
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tion. Since the structural metric µ2 and the regularizer R3 are selected, the modification of the278

genetic algorithm is ready to generate ranking superpositions. s279

Generation of ranking superpositions. Modified genetic algorithm is launched on TREC-7. The best280

selected superpositions are compared with ones from F0. The superpositions in F0 are of simple281

structure and have a high quality in average on analyzed collections. Besides, these superpositions282

are better in average than the traditionally used ranking models BM25, LGD, LMDIR. Here is the283

list of the best superpositions from F0284

2285

1. f1 = e

√√√√ln

(
x

y

)
,286

2. f2 =

√
ln(x)
√
y
,287

3. f3 = 4

√
x

y
,288

4. f4 =

√
y +

√
x

y
,289

5. f5 = 4

√
x

y
· e−y/2,290

6. f6 =

√
√
x+

√
x

y
.291

The selection of the best superpositions is performed by the modified genetic algorithm on292

TREC-7. The other datasets TREC-5, TREC-6, TREC-8 serve as test datasets. After 1000293

iterations the modified genetic algorithm selects the following family of superpositions (for the294

convenience denote ln(x+ 1) as ln(x) and g(x) = ln ln(x)):295

2296

1. h1 = g

(
g(x)√

ln(x) + x

)
− ln(y),297

2. h2 = g

 g(x)√
1
2 ln(x) + x

− ln(y),298
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3. h3 = g

ln

 g(x)√
1
2 ln(x) + x

− ln(y)

 ,299

4. h4 = g

(
g(x)√

g (
√
x) + x

)
− ln(y),300

5. h5 = g

(
g(x)√

ln(x) + ln(y)

)
− ln(y),301

6. h6 = g

(
g (ln(x))√
ln(x) + x

)
− ln(y).302

The values of MAP of the superpositions {hj} and {fi} are is presented in Table 3. The303

superpositions from F0 are presented in the upper half of the table. The superpositions {hj} are304

presented in the lower half. The qualities of the best functions {fi} are bold in each column in the305

upper half. In the lower half we bold those values, which are higher than the bold values in the306

corresponding column in the upper half.307

Superposition TREC-5 TREC-6 TREC-7 TREC-8

Superpositions from F0

f1 8.785 13.715 10.038 13.902

f2 8.518 12.996 9.216 13.074

f3 8.908 13.615 9.905 13.708

f4 8.908 13.615 9.905 13.708

f5 8.908 13.615 9.908 13.709

f6 8.872 13.613 9.890 13.695

Family of selected superpositions

h1 8.965 13.693 10.600 14.403

h2 9.472 13.723 10.650 14.402

h3 9.558 13.786 10.631 14.376

h4 9.226 13.713 10.5 14.374

h5 8.862 13.388 10.439 14.359

h6 8.104 13.483 10.421 14.355

Table 3: Comparison of the superpositions {hj} to {fi} according to the MAP criterion
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Note that the superpositions h1, h2, h3, h4 are uniformly better than the functions from [2] on308

all 4 datasets. The other superpositions are better in average. The modified genetic algorithm is309

able to build effective yet simple structured superpositions, which outperform the known ones.310

8. Conclusion311

This paper investigates an Information Retrieval ranking function construction technique. It312

develops a genetic algorithm, which consequently generates ranking functions. The basic version313

of this algorithm is inclined to generate overfit ranking functions. To avoid overfitting, one must314

control their structural complexity and solve an evolutionary stagnation problem. It is solved315

by use of regularizers and structural metrics respectively. A regularizer, presented in the quality316

function, controls the structural complexity of the functions. Overfit functions are penalized and317

unlikely to pass to the next iterations in the genetic algorithm. A structural metric estimates the318

diversity of the generated functions. If all generated functions are similar to each other, some of319

them are replaced by random ones. It solves a problem of evolutionary stagnation. This paper320

analyzes different regularizers and structural metrics and chooses those, which provide a better321

generation. The modified genetic algorithm uses the selected pair metric-regularizer and generate322

effective yet simple structured functions. These functions outperform BM25, LGD, LMDIR. and323

the ones selected by are exhaustive approach.324

Future research TODO325
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