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Abstract

This paper presents a comprehensive analysis of multicollinearity problem in data fitting. Data
fitting is stated as a single-objective optimization problem where an objective function indicates
the error of approximation the target vector with a some function of given features. The linear
dependence between features means that the multicollinerity problem exists and leads to unsta-
bility and redundancy of the built model. These problems are addressed by introducing a feature
selection method based on a quadratic programming approach. This approach takes into account
the positions of the features and the target vector and select features according to relevance and
similarity measures, which are defined by a user. Therefore, the built model is less redundant and
more stable. To evaluate the quality of the proposed feature selection method and compare it with
others we use different criteria to measure unstability and redundancy. In the experiments we
compare proposed approach with other feature selection methods: LARS, Lasso, Ridge, Stepwise
and Genetic algorithm. We show that the quadratic programming approach gives the best results
according to considered criteria on the test and real data sets.

Keywords: data fitting, feature selection, multicollinearity, quadratic programming, evaluation
criteria, test data sets

1. Introduction

This paper addresses the multicollinearity problem and proposes its comprehensive analysis.
Multicollinearity is a strong correlation between features, which affect the target vector simultane-
ously. Due to multicollinearity the common methods of regression analysis like least squares build
unstable models of excessive complexity. The formal definitions of model stability, complexity and
redundancy are given in Section [5

To treat multicollinearity problem feature selection methods are used. Most of previously
proposed feature selection methods that solve multicollinearity problem are based on different
heuristics [Il, 2], greedy searches [3] [4] or regularization techniques [5l [6]. These approaches do
not take into account the data set configuration and do not guarantee optimality of the obtained
feature subset [7]. In constrast, we propose to use quadratic programming approach [§] to solve
multicollinearity problem that corrects disadvantages mentioned above. This approach is based
on two ideas: the first one is to represent features as some binary vector, and the second one is
to define the feature subset quality criterion as quadratic form. The first term of the quadratic
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form is pairwise feature similarities and the linear term is feature relevances. Therefore, we can
state feature selection problem with the quadratic objective and boolean vector domain. The
measures of feature similarities and relevances are problem-dependent and have to be defined by
user before performing feature selection. These measures have to take into account the data set
configuration to remove redundant, noisy and multicollinear features, but select features which
are significant for target vector approximation. We consider the correlation coefficient [9] and the
mutual information [10] between features as measures of feature similarities and between features
and target vector as measure of feature relevances. These measures give positive semidefinite
quadratic form, and to get convex optimization problem we need to relax binary domain to con-
tinuous one. After this relaxation we have convexr optimization problem, which can be efficiently
solved by state-of-the-art solvers, for example from CVX, a package for specifying and solving
convex programs package [11], [12]. To return from the continuous solution to the binary one, we
need a significance threshold, which defines what features are selected. If one would like to use
a feature similarity function that does not give positive semidefinite matrix, then optimization
problem is not convex, and convex relaxation is required. In this case, the authors propose the use
semidefinite programming relaxation [I3]. Such feature similarity functions are out of scope of this
paper. In addition, the proposed approach gives simple visualization of the feature weights in the
target vector approximation. This visualization helps tuning the threshold in the most appropriate
way for user.

We carry out experiments on special test data sets generated according to the procedure pro-
posed in [7]. These data sets demostrate different cases of multicollinearity between features and
correlation between features and target vector. Experimets show that the proposed approach out-
performs other considered feature selection methods on every type of test data sets. Also quadratic
programming feature selection shows better quality on test and real data sets according to various
evaluation criteria simultaneously in constrast to other feature selection methods.

The main contributions of this paper are:

e We address multicollinearity problem with quadratic programming approach and investigate
its property.

e We demonstrate performance of the quadratic programming feature selection method on the
test data sets according to various criteria.

e We compare the proposed feature selection method with others on test and real data sets
and show that it gives the better feature subset than other methods. The feature subset
quality are measured by external criteria.

Related works. Previously, authors propose different strategies to detect multicollinearity problem
and approaches to solve this problem [14] [15, [16]. One way to solve multcollinearity problem is to
use feature selection methods [16]. They are based on some score function which estimates quality
of feature subset or some heuristic sequaential search procedure. This paper considers feature
selection methods, which are based on scoring function, like LARS [17], Lasso [18], Ridge [6], Elastic
Net [5], and which are based on the sequential search like Stepwise [19] and Genetic algorithm [20)].

2. Feature Selection Problem Statement

Let X = [x1,..-,X,] € R™" be the design matrix, where x; € R™ is an j-th feature.
Let y € R™ be the target vector. Denote by J = {1,...,n} a feature index set. Let A C J be a



feature index subset. The data fitting problem is to find a parameter vector w* € R™ such that:

w" = arg min S(w, A|X,y, f), (1)
weRn?
where S is an error function, which validates the quality of any parameter vector w and corre-
sponding feature index subset A with given design matrix X, target vector y and a function f.
The function f approximates the target vector y.
This study uses linear function:

f(X, A, w) =X w,

where X 4 is the reduced design matrix which consists of only the feature with indices from the
set A, and quadratic error function

The features x;,j € J are supposed to be noisy, irrelevant or multicollinear that leads to
additional error in estimation of the optimum vector w* and unstability of this vector. One
can use feature selection methods to remove named features from design matrix X. The feature
selection procedure reduces dimensionality of problem and improves stability of the optimum
vector w*. The feature selection problem is

A" = argmin Q(A[X, y), (3)
ACT
where @) : A — R is a quality criterion, which validates the quality of some selected feature index
subset A C 7. Problem does not necessarily require any estimation of the optimum parameter
vector w*. It uses relations between the features x;,j = 1,...,n and the target vector y.

Let a € B" = {0,1}" be an indicator vector such that a; = 1 if and only if j € A. So the

problem can be rewritten in the following form:
a* = arg min Q(alX, y), (4)
acB”
where @) : B” — R is another form of the criterion () with domain B"™. The vector a* and the
index set A* are equivalent in the following sense:

a;=1ejeA, jed. (5)

2.1. Multicollinearity problem
In this subsection we give formal definition of multicollinearity phenomenon and special cases.
Assume that features x; and target vector y are normalized:

Iylls = 1and |x,l =1, j € 7. ©)
Consider active index subset A C 7.

Definition 2.1 The features with indices from the set A are called multicollinear if there exist
the index j, the coefficients ay, the index k € A\ j and sufficiently small positive number § > 0
such that

2
X;— Y kx| <0 (7)

keA\j 9

The smaller ¢ is, the higher degree of multicollinearity.



The particular case of this definition is the following one.

Definition 2.2 Let the features indexed i, j be correlated if there exists sufficiently small positive
number d;; > 0 such that:

Ix; = x; 113 < dis- (8)
From this definition it follows that ¢;; = d;;. Inequalities and are identical if ay =0 k # j
and ap =1k =7.

Definition 2.3 Feature x; is called correlated with the target vector y if there exists sufficiently
small positive number 6; > 0 such that

2
Iy = x;ll2 < 95

3. Quadratic Optimization Approach to Multicollinearity Problem

The paper [7] shows that none of he considered feature selection methods (LARS, Lasso, Ridge,
Stepwise and Genetic algorithm) solve the problem and give stable, accurate and nonredun-
dant model simultaneously. Therefore, we propose the quadratic programming approach to solve
multicollinearity problem.

The main idea of the proposed approach is to minimize the number of similar features and
maximize the number of relevant features. To formalize this idea we represent the criterion ) from
the problem in the form of quadratic function:

Qa) =a'Qa—b'a, (9)

where Q € R™™ is a matrix of pairwise features similarities, b € R™ is a vector of features
relevances to the target vector.
To indicate the matrix Q and vector b computation approach, introduce functions Sim and Rel:

Sim: J x J — [0, 1],

Rel: 7 — [0, 1]. (10)

These functions are problem-dependent, defined by user before performing feature selection and
indicate the way to measure feature similarities (Sim) and relevance to the target vector (Rel).
To highlight the dependence quadratic programming feature selection method on similarity and
relevance functions, introduce the following definition.

Definition 3.1 Let QP(Sim, Rel) be a feature selection method, which solves the follwing opti-
mization problem:

a" =argmina’Qa — b'a, (11)
acB”

where the matrix Q is computed by the function Sim:
Q = [g] = Sim(Xz‘an>- (12)
and the vector b is computed by the function Rel:
b = [bi] = Rel(x;)- (13)

Below we provide examples of functions Sim and Rel, which illustrate the proposed approach.
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3.1. Correlation coefficient

The similarities between features x; and x; can be computed with the Pearson correlation
coefficient [9]. The Pearson correlation coefficient is defined as:

_ Cov(x;, Xj)
\/ Var(x) Var(x;)

where Cov(x;, X;) is a covariance between features x; and x;, Var(-) is a variance of a feature.
The sample correlation coefficient is defined as

Mz

(X — Yi)(Xjk - Yj)
! . (14)

(X — Xi)? kz_:l(ij - Yj)Q

£
Il

~

Pij =
\/k

In this case the elements of the matrix Q = [g;;] are equal to the absolute values of the correspond-
ing sample correlation coefficients:

[\gE

qij = Sim(x;, X;) = |4 (15)

and the elements of the vector b = [b;] are equal to absolute values of the sample correlation
coefficient between feature x, and the target vector y:

bi = Rel(x;) = |piyl- (16)

It means that we want to minimize the number of correlated features and maximize the number
of features correlated to the target vector.

3.2. Mutual information

One more feature similarity measure is based on the mutual information concept [I0]. The
mutual information between features x; and x; is defined as

p(Xi> X;5)
(X x;) = // p(Xi x;) 1 8 )P (X])dxidxj- (17)

The sample mutual information is calculated based on estimation of the probability distribution
in the equation . In this case the elements of the matrix Q = [g;;] are equal to the value of
the corresponding sample mutual information:

qij = Slm(Xm X]) = [(Xza X])

and the elements of the vector b = [b;] are equal the sample mutual information of every feature
and the target vector:

bi = Rel(x;) = I(x;,y)-



3.3. Normalized feature significance

The correlation coefficient and mutual information do not directly present the feature
relevance. To take into account features relevance we propose to use the normalized significance of
the features estimated by t-test. To select relevant features, state the following hypothesis testing
problem for every j — th feature:

Hy:w; =0,
v (18)
H1 LWy 7é 0.
The obtained p-value p; shows the j-th feature relevance in the target vector approximation. If
p; < 0.05, than we reject the Hy hypothesis and suppose that the corresponding j-th element of
the parameter vector w; is not zero.

Definition 3.2 Let p; be a normalized feature significance for the j-th feature, j € J:
Dj

- )
Z Pk
k=1

pi=1-—

Thus, to represent the feature relevance we propose to use in ([13]) normalized feature significance:

bj = RGI(X]> = ﬁj' (19)

3.4. Convex representation of the problem (|11)

Quadratic programming approach to multicollinearity problem leads to the problem , which
is NP-hard due to boolean domain. Therefore, we need to approximate it with the convex oprim-
ization problem to solve it efficiently.

Assume that function Sim gives the positive semidefinite matrix Q, then the quadratic form @
is the convex function. To represent problem in the convex form we have to replace nonconvex
set B™ with the convex one. The natural way for this representation is to use the convex hull of
the set B™:

Conv(B") = [0, 1]".

Now the problem is approximated by the following convexr optimization problem:

z" =argminz'Qz —b'z
z€(0,1]" (20)
s.t. ||zl < 1.

We add the constraint to show that z* can be treated as a vector non-normalized probabilities for
every feature in active set A*.

To return from the continuous vector z* to the boolean vector a* and consequently to the active
set A* (see (5])), we use a significance threshold .

Definition 3.3 Let 7 be a significance threshold such that 2z} > 7 if and only if ¢} = 1 and j € A"

Tuning 7 is problem-dependent and based on the appropriate error rate, number of selected features
and values of evaluation criteria. One has to check some range of 7 to get the most appropriate
one for considered problem. In Section [6] we show examples of tuning 7.



4. Test Data Sets

To test the proposed quadratic programming approach in the case of extremely feature cor-
relation we use synthetic test data sets from the paper [7]. These data sets demonstrate the
performance of feature selection methods in the treating multicollinearity problem. Below we
provide summary of the proposed test data sets.

Definition 4.1 Let inadequate and correlated data set be a data set that consists of the correlted
features, which are otrhogonal to the target vector. Fig. demonstrates configuration of such
data set.

Definition 4.2 Let adequate and random data set be a data set that consists of the random
features with the single feature which approximates the target vector. Fig. demonstrates
configuration of such data set.

Definition 4.3 Let adequate and redundant data set be a data set that consists of the features
with are correlated to the target vector. Fig. demonstrates configuration of such data set.

Definition 4.4 Let adequate and correlated data set be a data set that consists of the orthogonal
features and features, corelated to the orthogonal ones; the taget vector is a sum of two orthogonal
features. Fig. demonstrates configuration of such data set.

Performance of the considered feature selection methods are compared according to various
evaluation criteria which are provided in the next section.

5. Evaluation Criteria

To evaluate quality of the selected feature subset and compare considered feature selection
methods we use the following criteria used in papers [21], 22].

Variance inflation factor. To diagnose multicollinearity, the paper [21] uses the variance
inflation factor VIF;. The VIF; shows a linear dependence between the j-th feature and the
other features. To compute VIF; estimate the parameter vector w* according to the problem
assuming y = x; and extracting j-th feature from the index set A = A\ j. The VIF; is computed

with the following equation:
1

RSS; . ) .
where R? =1- Tos. 18 the coefficient of determination and
J

m

] - -1 &
RSS; = [Ix; — Xaw'[l3,  TSS; =) (i—X;))" X;= P > i
=1

=1

The paper [21] states that if VIF; 2 5 then the associated element of the vector w* is poorly
estimated because of multicollinearity. Denote by VIF the maximum value of VIF; for all j € A:

VIF = max VIF;.
jeA
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Figure 1: Synthetic test data sets configuration: @ inadequate and correlated, @ adequate and random, [c)|adequate
and redundant, @ adequate and correlated.

Stability. To estimate the stability R of the parameter w estimation based on the selected
feature subset A, we use the logarithm of the inverse condition number of matrix X"X:

)\min

)\max

R=1In

Y

where the A\« and \;, are the maximum and minimum non-zero eigenvalues of the matrix X"X.
The larger R is, the more stable parameter estimation.

Complexity. To measure complexity C' of the selected feature subset A* we use the cardi-
nality of this subset, i.e.
C=|A".

The less complexity is, the better selected subset.



Mallow’s C,. The Mallow’s C, criterion [23] trades off the residual norm S and the

number of features p. The Mallow’s C),

defined as

Cp:T—p—m—l—Qp,
r

where S, is similar to S, but computed with p = |.A| features only. In terms of this criterion the

smaller C), is, the better feature subset.

BIC. Information criterion BIC [24] defined as

BIC =7 + plogm.

The smaller value of BIC is, the better model fits the target vector.

summarized in the table [1I

Counsidered criteria are

Table 1: A list of the criteria to evaluate the selected feature subset

Name Formula Meaning
VIF VIF = max ﬁ Indicator of the the multicollinear
je i

features existence

Stability R = In Jmin

max

ity

An indicator of the model stabil-

Complexity | C' = |A*|

tures

The number of the selected fea-

Mallow’s C,, | C}, = TTP -

m + 2p | A trade-off between accuracy and

number of features

BIC BIC =r+plogm | A trade-off between
norm and number of features

residues

6. Computational experiment

In this section we provide the experiments on the synthetic and real data sets to show the
performance of the proposed approach in multicollinearity problem. The source code can be found

at Githubll

6.1. Data

We use the synthetic test data sets generated according to the procedure proposed in [7] to
investigate performance of the considered methods from the multicollinearity problem point of
view. The test data sets configurations are described in Section[d The parameters of the test data
sets are the following: number of objects m = 1000, number of features n = 50. Also we use the

publicly available real dataset of diesel

fuels NIR spectra [25].

Thttps://github.com /amkatrutsa/QPFeatureSelection



6.2. Comparison with other feature selection methods

Tables [2] and [0| show that the proposed approach is appropriate for every test data set
configuration described in Section [f]in contrast with other feature selection methods. The methods
are sorted in the descending order: the higher method is, the better. The choice of the functions
Sim and Rel for every data set configuration is based on the dependendces between features and
target vector. The significance threshold 7 is chosen for every data set separately. The dash in

table cell indicates that the number of selected features is zero.

Table 2: Evaluation criteria for the inadequate correlated data set — Fig.

Method C, | RSS R VIF | BIC

QP(p, p) (r=8-10"°) | =997 | — — — —

LARS —997 | — — — —

Genetic —997 | — — — —
Lasso —-997 | 1 —6.57 | 16.6 | 310.48
Ridge —-997 | 1 —6.69 | 16.6 | 346.39
Stepwise —997 | 1.68 | —6.69 | 16.6 | 347.01
Elastic Net -997 | 1 —6.58 | 16.6 | 310.48

Table 3: Evaluation criteria for the adequate and random data sets — Fig. m

Method C, RSS R | VIF | BIC
QP(p, p) (r=10"% ] —997 12-107° 0 |024] 69
Lasso 7-10° [850-10*| 0 |025] 6.9
Elastic Net 876-107* | 876-10* | 0 [0.25| 6.9
Ridge 7.97-10° 0.97 0 [025] 7.88

LARS —997 | 1.3-10° [ —0.78 [ 0.32 | 8.29
Genetic —997 | 1.36-107 [ =331 0.9 | 525

Stepwise —997 | 1.33-107 10 [ —3.36 | 0.89 | 53.88

Table 4: Evaluation criteria for the adequate and redundant data set — Fig. |1c)

Method Cp RSS R VIF BIC
QP(p, p) (r=107) | —997 | 85-107 | 0 025 | 6.9
Lasso 5.16-10% | 85-107% 0 0.24 6.9
Ridge 5.9-10M 0.97 —27.13 | 2.9-10Y | 346.36
Elastic Net 516-10% | 85-1074 —25.01 | 2.5-10° 41.45
Genetic —-997 1.67-1072 | —27.11 | 2.87-10Y | 345.39
Stepwise —997 1.73-107"2 | =27.13 | 2.9-10° | 345.39
LARS —997 1.65-107" | —27.13 | 2.9-10° | 345.39

Now we provide the similar analysis for NIR spectra of diesel fuel dataset in Fig. [2| where we
compare dependence of residual norm on the number of the selected features based on correlation
coefficient and mutual information similarity measures. We have to provide this comparison be-
cause we do not know the configuration of real data set in constrast with the test data sets. Fig.
shows that correlation coefficient similarity measure is better than mutual information to identify
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Table 5: Evaluation criteria for the adequate and correlated data set — Fig. m

Method C, RSS R VIF BIC
QP(p,p) (r=10"") | 9.1-10° | 7.5-107% 0 0.63 13.8
Stepwise 9.4-10° | 88-107% 0 0.63 13.82
Genetic 4.95-107 | 2.93-10"% 0 0.63 13.81
Ridge 1.8-10% 0.95 —36.8 | 8.65-10'0 | 152.92
LARS 10%0 0.38 —67.87 10%0 108.15
Lasso 1.73-10%" | 9.2-107* | —36.83 1017 150.59
Elastic Net 1.7-10*" | 9.2.107* | —36.83 107 150.59

the minimum number of features which give appropriate quality.

10° . .
103\\
10!
10~
1073
10-°
1077
1070
10—11
1071
10—15
10717 t
o M bbb Y *
1072 . . . . . — . 10-20 = . g — g . . :
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 450
Number of selected features, |.A*| Number of selected features, |.A*|

a) b)

Figure 2: Dependence of resudual norm on the number of selected features @ QP(p, p) for correlation coefficient
and @ QP(I, I), for mutual information

Error, [y — Xaw|3
Error, [ly — Xew|;3

Table [6] compares the considered approach with other feature selection methods on the NIR
spectra of diesel fuel. This table shows that quadratic programming approach is comparable with
other considered feature selection methods.

Table 6: Evaluation criteria for the diesel NIR spectra dataset

Method C, RSS R VIF BIC
QP (p, p) (r=109) | —110 |1.37-1078 | —25.7 | 6.43-10° | 548.38
Genetic 11088 | 7.68-1030 | —24 | 8.13-10° | 534.19
LARS 322-1021 [ 2.07-1077 | —28.3 | 7.94-107 | 529.47
Lasso 2.5 10% 1.61 —27.72 [ 1.03-10°T | 1712.92
ElasticNet 2.51-10% 1.61 —27.72 [ 1.03-10°T | 1712.92
Stepwise 3.66-10%° | 2356 | —36.78 | 1.94-10%2 | 1919.23
Ridge 1.59 - 107 1.02 —36.22 | 1.07- 102 | 1.79 - 103
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6.3. Tuning significance threshold T

This paragraph provides methodology of tuning significance threshold 7 through simple visu-
alization and choosing the most important criterion from Table [l The general approach to tune
significance threshold 7 is to plot dependence of some evaluation criterion or criteria on some range
of 7. These plots demonstrate what value of 7 is more appropriate for considered data set. Fig.
and [ show dependence number of features and error function on the significance threshold 7. We
use these plots to select 7 for tables [2], B [] and [5] in subsection [6.2]

To tune 7 we use the correlation coefficient to generate matrix Q, and correlation between
features and target vector (16)) or normalized feature significance to generate linear term
b. Fig. [3] shows the number of selected features versus the chosen threshold 7 for every kind of
synthetic test data sets. Fig. [3a)| shows that all features have the same and very small weights,
which means that these features are irrelevant to target vector approximation. Fig.|3c)|shows that
all features have the same weights, but in contrast with Fig. these weights are much bigger,
which means that all features are relevant and any feature can be selected to approximate target
vector. Fig. shows that most features are irrelevant or redundant and only small number of
features, namely 2, is relevant to precise target vector approximation.

Fig. 4] shows dependence of the error function S on significance threshold 7. Fig shows
that for any 7 the error is constant, which confirms the interpretation of Fig. |3a)| about features
irrelevance.

Fig. shows slow increasing of error function with increasing 7. In case of random data
set this dependence means that more features are, lower aproximation error. Combined Fig.
and we conclude that significance threshold 7 ~ 10~* is the best trade-off between number of
features and approximation error.

Fig. shows that error decreases significantly in case of exact 7 = 1072 Compare with
Fig. and conclude that the single feature is enough to approximate target vector, which is
consistent with the known adequate and redundant data set configuration, see Fig. [Lc)|

Fig. shows that most features lead to error oscillation (near 7 = 107%) and after selection
2 relevant features approximation error is stable low. This dependence is consistent with known
adequate and correlated data set configuration, see Fig. [1d)|

Thus, the described methodology shows that tuning significance threshold 7 and quadratic pro-
gramming feature selection give reasonable result in feature selection problem. The provided plots
demonsrate ability of the proposed approach to extract considered patterns of multicollinearity
from test data sets. The main reason of this ability is the choice of the functions Sim and Rel,
which give the appropriate estimations of the features similarity and relevance.

7. Conclusion

This study addresses multicollinearity problem from the quadratic programming point of view.
Quadratic programming approach gives reasonable methodology to investigate features relevance
and redundancy. The proposed approach is tested on the syntehtic test data sets with special
configurations of features and target vector. These configurations demonstrate different cases of the
multicollinearity problem. Under multicollinearity conditions the quadratic programming feature
selection method outperforms other feature selection methods like LARS, Lasso, Stepwise, Ridge
and Genetic algorithm on the considered test and real data sets. Also, we compare performance of
the proposed approach with other feature selection methods according to various evaluation criteria
and show that the proposed approach gives higher quality feature subsets than other methods.
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Figure 3: Dependence the cardinality of the active index set .4 on the threshold 7 for: @ inadequate correlated data
set, [b)| adequate random data set, |c)| adequate redundant data set, |d)| adequate correlated data set.
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