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Abstract

This study investigates the multicollinearity problem and the performance of feature

selection methods in case of datasets have multicollinear features. We propose a stresstest

procedure for a set of feature selection methods. This procedure generates test data

sets with various configurations of the target vector and features. A number of some

multicollinear features are inserted in every configuration. A feature selection method

results a set of selected features for given test data set. To compare given feature selection

methods the procedure uses several quality measures. A criterion of the selected features

redundancy is proposed. This criterion estimates number of multicollinear features among

the selected ones. To detect multicollinearity it uses the eigensystem of the parameter

covariance matrix. In computational experiments we consider the following illustrative

methods: Lasso, ElasticNet, LARS, Ridge and Stepwise and determine the best one,

which solve the multicollinearity problem for every considered configuration of dataset.

Keywords: regression analysis, feature selection methods, multicollinearity, test data

sets, the criterion of the selected features redundancy.

1 Introduction

This study is devoted to multicollinearity problem and develops a testing procedure for
feature selection methods. Assume that data sets have multicollinear features. Multicollinearity
is a strong correlation between the features, which affect the target vector simultaneously.
The multicollinearity reduces the stability of the parameter estimations. The multicollinearity
problem, detection methods and methods to solve this problem are discussed in [1, 2, 3]. The
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parameter vector estimation is called stable if a small change of the parameter vector leads to
a small change of the target vector estimation.

This study proposes a test procedure for feature selection methods. It uses the various
configurations of the target vector and features to construct the test dataset. This procedure
is used to compare feature selection methods and to reveal pros and cons of them.

We solve the linear model selection problem. This problem is formulated as the feature
selection problem, where selected features fit the target vector in the best way to form the
most stable model. The model stability is defined as the condition number logarithm of the
estimation of the model parameter covariance matrix.

It draws generated test data sets including multicollinear features, features correlated to
the target vector, orthogonal features and features orthogonal to the target vector. Setting the
cardinality of these feature sets gives opportunity to generate data sets with various features
and target vector configuration. This test data sets generation procedure investigates how
the considered feature selection method effectiveness depend on continuously increasing the
parameter of multicollinearity.

We propose a criterion to rank feature selection methods according to their resistance to
multicollinearity. The proposed criterion estimates the number of multicollinear features among
the selected ones for given limit value of error function. The feature selection methods are
ranked according to increasing the number of multicollinear features in the set of the selected
ones. The best method selects features with the minimum number of multicollinear features.

Related works. Feature selection methods are used to solve the multicollinearity problem
in regression [9]. Also, they are used in the following data mining problems: dimensionality
reduction [4, 5], simplification usage of the standard machine learning algorithms [6], removing
irrelevant features [7] and increasing the generalisation ability of applying algorithm [8].

The feature selection methods minimize their error functions, that show the quality of the
selected subset of features. The papers [10, 11, 12] review existing feature selection methods,
classify them according to error functions and optimum feature subset search strategies.

In the presence of multicollinearity in a dataset the feature selection methods improve the
parameter estimations stability and reduce their variance. The feature selection methods are
based on either regularizators or add-del features strategies. For example, the methods using
regularizators are ridge regression [13], where the regularizator is the weighted euclidean norm
of the parameter vector, Lasso [14] and LARS [15], where the regularizator is the weighted
sum of the vector parameter elements, Elastic net [16], where the regularizator is the linear
combination of the two previous regularizators. Stepwise uses the F-test to detect the most
significant feature and add it or the least significant to remove it.

The most related paper about feature selection test [9] proposes a data sets generation
procedure and quality measure to evaluate the feature selection method quality. However it
doesn’t evaluate the quality measure while the parameter of multicollinearity and data set
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parameters are changing continuously.

2 Feature selection problem statement

Let D = {(X,y)} be the given data set, where the design matrix

X = [χ1, . . . ,χj, . . . ,χn], X ∈ Rm×n and j ∈ J = {1, . . . , n}.

The vector χj is called the j-th feature and the vector y = [y1, . . . , ym]
T ∈ Y ⊂ Rm is called

the target vector. Assume that the target vector y and design matrix X are related through
the following equation:

y = f(w,X) + ε, (1)

where f maps the cartesian product of the feasible parameter space and the space of the m×n
matrices to the target vector domain, and ε is the residual vector. The data fit problem is to
estimate the parameter vector w∗,

w∗ = argmin
w∈Rn

S(w|DL,A, f), (2)

where S is the error function. The set DL ⊂ D is a training set and the set A ⊆ J is the
active index set used in computing the error function S. In the stresstest procedure we use the
quadratic error function

S = ‖y − f(w,X)‖22 (3)

and the linear regression function f(w,X) = Xw. The introduced stresstest procedure could be
applied to the generalised linear model selection algorithms, where the model is f = µ−1(Xw)

and µ is a link function.

Definition 2.1 Let A∗ denote the optimum index set, the solution of the problem

A∗ = argmin
A⊆J

Sm(A|w∗,DC, f), (4)

where DC ⊂ D is the test set, w∗ is the solution of the problem (2) and Sm is an error function
corresponding to a feature selection method m (5).

The feature selection problem (4) is to find the optimum index set A∗. It must exclude
indices of noisy and multicollinear features. It is expected that if one uses features indexed by
the set A∗ then it brings more stable solution of the problem (2), in comparison to the case of
A ≡ J .

In the computational experiment we consider the feature selection methods from the set
M = {Lasso, LARS, Stepwise, ElasticNet, Ridge}.

Definition 2.2 A feature selection method m ∈ M is a map from the complete index set J
to active index set A ⊆ J :

m : J → A. (5)
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According to this definition we consider the terms feature selection problem and the model
selection problem to be synonyms.

Definition 2.3 Let a model be a pair (f ,A), where A ⊆ J is an index set. The model selection
problem is to find the optimum pair (f∗,A∗) which minimizes the error function S (3).

Definition 2.4 Call the model complexity C the cardinality of the active index set A, number
of the selected features:

C = |A|.

Definition 2.5 Define the model stability R be logarithm of the condition number κ of the
matrix XTX:

R = lnκ = ln
λmax

λmin

,

where λmax and λmin are the maximum and the minimum non-zero eigenvalue of the matrix
XTX. The features with indices from the corresponding active set A are used in computing
the condition number κ.

3 Multicollinearity analysis in feature selection

In this section we give definitions of multicollinear features, correlated features and fea-
tures correlated with the target vector. In the following subsections we list and study the
multicollinearity criteria.

Assume that the features χj and the target vector y are normalized:

‖y‖2 = 1 and ‖χj‖2 = 1, j ∈ J . (6)

Consider active index subset A ⊆ J .

Definition 3.1 The features with indices from the set A are called multicollinear if there exist
the index j, the coefficients ak, the index k ∈ A\ j and sufficiently small positive number δ > 0

such that ∥∥∥∥∥∥χj −
∑
k∈A\j

akχk

∥∥∥∥∥∥
2

2

< δ. (7)

The smaller δ the higher degree of multicollinearity.

Definition 3.2 Call the features indexed i, j be correlated if there exists sufficiently small
positive number δij > 0 such that:

‖χi − χj‖22 < δij. (8)

From this definition it follows that δij = δji. In the special case ak = 0 k 6= j and
ak = 1 k = j the inequalities (8) and (7) are identically.
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Definition 3.3 A feature χj is called correlated with the target vector y if there exists suffi-
ciently small positive number δyj > 0 such that

‖y − χj‖22 < δyj.

Further used the following notations RSS (Residual Sum of Squares) and TSS (Total Sum
of Squares):

RSS = S(DL,w
∗) = ‖ε‖22 and TSS =

m∑
i=1

(yi − y)2, where y =
1

m

m∑
i=1

yi. (9)

3.1 Variance inflation factor

The variance inflation factor VIFj is used as a multicollinearity indicator [17]. The VIFj

is defined for j-th feature and shows a linear dependence between j-th feature and the other
features.

To compute VIFj estimate the parameter vector w∗ according to the problem (1) assuming
y = χj and extracting j-th feature from the index set J = J \ j. The functions RSS and TSS

are computed similar to (9). The VIFj is computed with the following equation:

VIFj =
1

1−R2
j

,

where R2
j = 1− RSS

TSS
is the coefficient of determination.

According to [17] any VIFj & 5 indicates that the associated elements of the vector w∗ are
poorly estimated because of multicollinearity. Denote by VIF the maximum value of VIFj for
all j ∈ J :

VIF = max
j∈J

VIFj.

However, VIFj can be infinitely large for some features. In this case it is impossible to determine
which features must be removed from the active set. This is major disadvantage of the variance
inflation factor.

Another multicollinearity indicator is the condition number κ of the matrix XTX. The con-
dition number is defined as:

κ =
λmax

λmin

,

where the λmax and λmin are the maximum and minimum non-zero eigenvalues of the ma-
trix XTX.

The condition number shows how much does the matrix XTX close to the singular matrix.
The larger κ the more ill-conditioned matrix XTX.

3.2 The Belsley criterion

To detect and remove indices of the multicollinear features from the active index set we
state the direct optimization problem using the Belsley criterion. We propose the new criterion
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to compare feature selection methods: the criterion of the selected features redundancy. This
criterion uses the maximum cardinality of the redundant index set, which can be removed within
the error function does not raised above given value. The features are removed according to
the Belsley criterion described below. The formal definition of the the maximum cardinality of
the redundant index set is given by (16).

Assume that the parameter vector w ∈ Rn has the multivariate normal distribution with
the expectation wML and the covariance matrix A−1,

w ∼ N (wML,A
−1).

The estimation Â−1 of the covariance matrix A−1 in the linear model is

Â−1 = (XTX)−1.

To inverse XTX we use the singular value decomposition of the m × n matrix X = UΛVT,
where U and V are the orthogonal matrices, and Λ is the diagonal matrix with the singular
values

√
λi on the diagonal, such that√

λ1 ≥ . . . ≥
√
λi ≥ . . . ≥

√
λr > 0,

where i = 1, . . . , r and r = min(m,n). Thus, the inversion XTX is following:

(XTX)−1 = VΛ−2V−1.

The columns of the matrix V is the eigenvectors and the squares of the singular values λi are
the eigenvalues of the matrix XTX since XTX = VΛTUTUΛVT = VΛ2VT and XTXV = VΛ2.

Definition 3.4 The ratio of the maximum eigenvalue λmax to the i-th eigenvalue λi is called
the condition index ηi

ηi =
λmax

λi
.

The large value of ηi indicates the close-to-linear relation between the features. The larger
value of ηi the closer relation between features to linear.

The variance of the vector w∗ elements are estimated as diagonal entries of the matrix
XTX = VΛ2VT:

Var(wi) =
n∑

j=1

v2ij
λ2j
.

Definition 3.5 The coefficient variance proportion qij is the j-th feature contribution to the
variance of the i-th element of the optimal parameter vector w∗. The formal definition of the
coefficient variance proportion qij is

qij =
v2ij/λ

2
j

n∑
j=1

v2ij/λ
2
j

,

where [vij] = V and λj is the eigenvalue of the matrix XTX.
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By this definition, larger value of the coefficient variance proportion shows close-to-linear
relation of the features.

To find the feature χj∗ from the multicollinear features set the Belsley criterion uses both
the condition index and the coefficient variance proportion in the following way. One must find
the feature index i∗ such that

i∗ = argmax
i∈A∗

ηi,

and using this index i∗ find another feature index j∗ such that

j∗ = argmax
j∈A∗

qi∗j. (10)

According to the Belsley criterion the j∗-th feature gives the largest contribution to variance
of the i∗-th element of the parameter vector w∗. There is the close-to-linear relation between
the j∗-th feature and the other ones. Therefore, we find the multicollinear feature which has
to be removed from the active index set A∗.

4 Test data set generation procedure

To test feature selection methods we propose a procedure to construct test synthetic data
sets. To define a test data set let Pf ,Py, Cf , Cy,R be the following index sets:

1) the index set Pf labels the orthogonal features;

2) the index set Py labels the features which are orthogonal to the target vector y;

3) the index set Cf labels the multicollinear features;

4) the index set Cy labels the correlated with the target vector y features;

5) the index set R labels the random features.

Denote the cardinalities of the declared index sets by

|Pf | = pf , |Py| = py, |Cf | = cf , |Cy| = cy, |R| = r.

To control the degree of multicollinearity (7) we use the parameter of multicollinearity k.
If k = 1, the features are multicollinear and the degree of multicollinearity is high. If k = 0,
they are orthogonal and the degree of multicollinearity is low.

The basic configurations of the test data sets are considered below:

1) an inadequate and correlated data set;

2) an adequate and random data set;

3) an adequate and redundant data set;
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4) an adequate and correlated data set.

1. The first basic configuration of the test data set consists of the target vector y and
features χj with their indices j from both index set Cf of the multicollinear features and
index set Py of the orthogonal to the target vector y features:∥∥∥∥∥χi −

∑
l∈A

αlχl

∥∥∥∥∥
2

2

< δ, i ∈ J , i 6∈ A ⊂ J , 〈y,χj〉 = 0, j ∈ J , J = Py ∩ Cf .

(11)
The fig. 1 shows a configuration of this dataset. It is called the inadequate and correlated
data set.

y

.

χ1

**

OO

χ2++
''

χ3
&& χ4

Figure 1: The inadequate and correlated data set

2. The second basic configuration of the test data set consists of the target vector y and
the features χj which are generated from the multivariate uniform distribution on the
r-dimensional unit hypercube and one of these features χi correlates with the target
vector y:

χ1, . . . ,χj, . . . ,χr ∼ U [0, 1]m, ‖y − χi‖22 < δ, j ∈ J = R, |R| = r. (12)

The fig. 2 shows a configuration of this dataset. It is called the adequate and random data
set.

3. The third basic configuration of the test data set consists of the target vector y and the
features χj correlate with each other and approximate the target vector y:

∥∥χi − χj

∥∥2
2
< δij, i, j ∈ J , ‖y − χj‖22 < δ, j ∈ J , J = Cy (13)

The fig. 3 shows a configuration of this data set. It is called the adequate and redundant
data set.
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Figure 2: The adequate and random data set
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Figure 3: The adequate and redundant data set

4. The forth basic configuration of the test data set consists of the target vector y and the
features with indices from the set J . The index set J is the union of the index set Pf of
the orthogonal features and the index set Cf of the multicollinear features. Particularly,
the set Cf contains the indices of the features, which are correlated with some of the
orthogonal features. At the same time, the target vector y equals the linear combination
of the features χj, j ∈ Pf :

〈χi,χj〉 = 0, i, j ∈ Pf , ‖χi − χj‖22 < δij, i ∈ Pf , j ∈ Cf , y =
∑
j∈Pf

ajχj,

J = Pf ∪ Cf .
(14)

The fig. 4 shows a configuration of this data set. It is called the adequate and correlated
data set.

You can obtain any other test data sets by the one or combination of the following ways:
change the cardinality of the index sets described above, change the parameter of multicollinear-
ity k, combine the basic configuration within the one test data set.

9



χ3

.

OO

χ6

χ7//

χ4

χ5
��

11

--

��

  

{{

. χ1

. y

χ2

Figure 4: The adequate and correlated data set

5 The criterion of the selected features redundancy

To compare the feature selection methods we propose the criterion of the selected features
redundancy. It estimates the number of the multicollinear feature indices in the active set.
Denote by s0 a limit value of the error function S. By definition 2.2 the feature selection
method returns the feature indices subset A ⊂ J . Estimate the optimum parameter vector
w∗A with features indexed by the set A. Denote by h the maximum cardinality of the index
set Jh ⊆ A such that the value of the error function S is less or equal to s0

S(Jh|w∗h,D) ≤ s0,

where w∗h is a vector, such that the i-th element of w∗h equals the i-th element of w∗A∗ , if i ∈ Jh

and zero, otherwise. The maximum cardinality h is the solution of the problem

h = argmax
S(Jh|w∗

h,D)≤s0
|Jh|. (15)

Definition 5.1 Denote by d the maximum cardinality of the index set of the redundant fea-
tures, number of the redundant features:

d = |A| − h. (16)

The redundant feature indices are found according to the Belsley criterion discussed in
the subsection 3.2 as the solution of the problem (10). Remove the obtained feature indices
sequentially until the error S is less or equal s0.

The criterion of the selected features redundancy ranks the feature selection methods in the
following way: the feature selection method mi is better than the feature selection method mj

if and only if the corresponding value of di is smaller than the corresponding value of dj:

di < dj ⇔ mi � mj.
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Standard criteria to compare linear regression models. Previously in [17, 18] the au-
thors propose the following criteria to compare linear regression models.

1. The adjusted coefficient of determination R2
adj considers adding redundant features and

defined as
R2

adj = 1− RSS/(m− k)
TSS/(m− 1)

.

The closer R2
adj to one the better model fits the target vector.

2. The Mallow’s Cp criterion trades off the RSS and the number of features p. The Mallow’s
Cp defined as

Cp =
RSSp

RSS
−m+ 2p,

where RSSp is similar to RSS, but computed with p features only. In terms of this criterion
the smaller Cp the better feature subset.

3. Information criterion BIC defined as

BIC = RSS + p logm.

The smaller value of BIC the better model fits the target vector.

6 Computational experiment

We execute the computational experiment in four stages. The first stage compares illustra-
tive feature selection methods on various quality measures. The limit error function s0 = 0.5

and the parameter of multicollinearity k = 0.2 and k = 0.8. The second stage performs VIF-
analysis of the multicollinearity. This analysis is illustrated by the plots of the parameter of
multicollinearity k versus VIF. These plots are obtained for the inadequate and correlated,
adequate and redundant and adequate and correlated data sets. A plot for an adequate and
random data set was omitted because there is no multicollinearity. The third stage investigates
the number of the redundant features d for given limit error function values s0. The obtained
pairs d and s0 are shown for the inadequate and correlated, adequate and redundant, adequate
and correlated data sets. The parameter of multicollinearity k = 0.2 and k = 0.8. The fourth
stage compares illustrative feature selection methods on complexity C and stability R of the
models, which are obtained using them. For every kind of data set we find the best one feature
selection method that gives the simplest model with the highest stability.

To carry out the experiments we generate four test data sets according to the equations (11),
(12), (13) and (14). The features and the target vector are normalized (6) before the experi-
ments. The elements of the optimum vector w∗ less 10−6 are assumed insignificant and equal
zero. The size m and n of the design matrix X is listed below for every generated data set:

1) inadequate and correlated data sets: n = py = 50, m = 1000;
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2) adequate and random data sets: n = r = 50, m = 1000;

3) adequate and redundant data sets: n = cy = 50, m = 1000;

4) adequate and correlated data sets: pf = 10, cf = 40, m = 1000.

We compare the following feature selection methods: LARS, Lasso, ElasticNet, Ridge and
Stepwise. For the ElasticNet penalty we use the weight 0.5 both in Lasso and Ridge penalty.
The dash in a table row means that corresponding feature selection method doesn’t select any
feature.

6.1 Comparing feature selection methods

This stage compares feature selection methods on the various quality measures. The limit
error function s0 = 0.5 and the parameter of multicollinearity k = 0.2 and k = 0.8. The
results of comparisons are in the tables 1, 2, 3 and 4. The feature selection methods are sorted
in the tables according to simultaneous increasing of the maximum number of the redundant
features d and RSS.

Table 1: Quality measures for the inadequate and correlated data sets
Method d Cp RSS κ VIF R2

adj BIC

k = 0.2

Lasso 0 −997 1 3.84 1.05 −3.32 314.62

Ridge 0 −997 1 4.13 1.05 −3.31 346.39

LARS 0 −997 — — — — —

Stepwise 0 −997 1 4.13 1.05 −3.41 346.41

Elastic Net 0 −997 1 3.84 1.05 −3.32 314.32

k = 0.8

Lasso 0 −997 1 717.8 16.6 −3.32 310.48

Ridge 0 −997 1 801 16.6 −3.31 346.39

LARS — −997 — — — — —

Stepwise 0 −997 1.68 801 16.6 −6.22 347.01

Elastic Net 0 −997 1 717.8 16.6 −3.32 310.48

6.2 VIF-analysis of multicollinearity

This stage obtains the dependence of VIF on the parameter of multicollinearity k for all
considered data sets assuming J = A and a number of illustrative feature selection methods.

The fig. 5 shows VIF-analysis of multicollinearity for the inadequate and correlated data
sets and all illustrative feature selection methods. None of them solve the multicollinearity
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Table 2: Quality measures for the adequate and random data sets
Method d Cp RSS κ VIF R2

adj BIC

Lasso 0 7 · 106 8.50 · 10−4 1 0.25 1 6.9

Elastic Net 0 8.76 · 10−4 8.76 · 10−4 1 0.25 1 6.9

Ridge 0 7.97 · 109 0.97 1 0.25 −3 7.88

LARS 0.2 −997 1.3 · 10−10 2.19 0.32 1 8.29

Stepwise 4.6 −997 1.33 · 10−10 28.86 0.89 1 53.88

Table 3: Quality measures for the adequate and redundant data sets
Method d Cp RSS κ, ·108 VIF, ·107 R2

adj BIC

k = 0.2

Ridge 0 2.3 · 109 0.97 24 1.14 −3.17 346.36

Lasso 1 2 · 106 8.5 · 10−4 0.95 0.58 1 13.82

Elastic Net 3.2 2 · 106 8.5 · 10−4 2.8 0.97 1 41.45

Stepwise 36 −997 4.22 · 10−10 24 1.14 1 345.39

LARS 36 −997 4.22 · 10−10 24 1.14 1 345.39

k = 0.8

Lasso 0 5.16 · 108 8.5 · 10−4 1 0.24 1 6.9

Ridge 0 5.9 · 1011 0.97 6.07 · 1011 2.9 · 109 −3.17 346.36

Elastic Net 3.2 5.16 · 108 8.5 · 10−4 7.3 · 1010 2.5 · 109 1 41.45

Stepwise 36 −997 1.73 · 10−12 6.07 · 1011 2.9 · 109 1 345.39

LARS 36 −997 1.65 · 10−12 6.07 · 1011 2.9 · 109 1 345.39

Table 4: Quality measures for the adequate and correlated data sets
Method d Cp RSS κ VIF R2

adj BIC

k = 0.2

Stepwise 1 −868.95 5.45 · 10−29 1 0.63 1 13.82

Ridge 0 6 · 1030 0.95 8.42 · 1015 1.15 · 1023 −3 210.95

LARS 1.8 5.38 · 1029 0.38 2.1 · 1016 3.3 · 1030 −0.62 102.62

Lasso 18 5.84 · 1027 9.18 · 10−4 1.4 · 1016 5.32 · 1020 1 150.6

Elastic Net 17.6 5.84 · 1027 9.18 · 10−4 1.4 · 1016 5.32 · 1020 1 150.59

k = 0.8

Stepwise 1 9.4 · 105 8.8 · 10−25 1 0.63 1 13.82

Ridge 0 1.8 · 1030 0.95 1016 8.65 · 1016 −2.97 152.92

LARS 1.2 1030 0.38 3 · 1029 1020 −0.57 108.15

Lasso 14.8 1.73 · 1027 9.2 · 10−4 9.92 · 1015 1017 1 150.59

Elastic Net 15.2 1.7 · 1027 9.2 · 10−4 9.92 · 1015 1017 1 150.59
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problem in case of features are correlated and orthogonal to the target vector. Only LARS
diagnoses the absence of the relevant features to fit the target vector and returns the empty
index set. This is observed in the table 1.
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Figure 5: VIF-analysis of multicollinearity for the inadequate and correlated data sets. The
increase parameter of multicollinearity k means increase of the degree of multicollinearity.

The fig. 6 shows VIF-analysis of multicollinearity for the adequate and redundant data sets.
All methods gives the same VIF curves except Lasso. Using Lasso we observe the sharp decline
of the VIF curve since the parameter of multicollinearity k is more than 0.4. It means that
there is no linear relation between the features selected by Lasso in the data sets with the
parameter of multicollinearity k & 0.4.

The fig. 7 shows VIF-analysis of multicollinerity for the adequate and correlated data sets.
LARS gives strong jumps of the VIF curve (fig. 7 (a)). Therefore, fig. 7 (b) shows the VIF

curves for Lasso and ElasticNet. They give the VIF curves similar to LARS, but the jumps
of these curves have smaller amplitude. Thus, fig. 7 (c) and 7 (d) show the VIF curves for
Stepwise and Ridge. After applying Stepwise method to the adequate and correlated data sets,
corresponding VIF . 2 while increasing the parameter of multicollinearity k. Hence, Stepwise
returns the index set without any linear relations among the corresponding features.

6.3 Analysis of the feature selection methods redundancy

The third stage studies the feature selection methods redundancy with the proposed criterion
(15) for the previously described data sets. The graphs of the limit error function s0 versus the
maximum number of the redundant features d are shown on the fig. 8, 9, 10.

The fig. 8 shows the plots of the limit error function s0 versus the number of the redundant
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Figure 6: VIF-analysis of multicollinearity for the adequate and redundant data sets used: (a)
all considered feature selection methods except Lasso, (b) Lasso only.

features d for the inadequate and correlated data set and parameter of multicollinearity k = 0.2

and k = 0.8. Since the limit error function s0 < 1, the value of d = 0, because of the target
vector is orthogonal to the features. Since s0 & 1, the value of d increases sharp, because of
the limit error function s0 is enough great to remove most features.

The fig. 9 shows the plots of the limit error function s0 versus the maximum number of
the redundant features d for the adequate and redundant data set and the parameter of mul-
ticollinearity k = 0.2 and k = 0.8. Lasso selects one feature for k = 0.2 and two features for
k = 0.8 which fit the target vector best way. Therefore the number of the redundant features d
equals zero for k = 0.2 and one for k = 0.8. ElasticNet selects the greater number of the redun-
dant features than Lasso. Ridge shows the stable zero line since s0 < 1 and sharp increasing
since s0 & 1. This result is similar to the result for the inadequate and correlated data set by
the same reason: first s0 is enough small to remove even one feature, later s0 is too great to
remove most features. LARS and Stepwise show the smooth increasing of the d while s0 < 1

and constant level around 48 while s0 ≥ 1.
The fig. 10 shows plots of the limit error function s0 versus the maximum number of the

redundant features d for the adequate and correlated data set and the parameter of multi-
collinearity k = 0.2 and k = 0.8. Stepwise gives one redundant feature for all values of the
limit error function s0. LARS gives no more five redundant features since increasing the limit
error function s0. Lasso and ElasticNet show the increasing of d since s0 < 1 and d ' 20 since
s0 ≥ 1. Ridge shows the plot of the s0 versus d similar to the previous data sets, but the value
of d starts oscillating since s0 ≥ 1.
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Figure 7: VIF-analysis of multicollinearity for the adequate and correlated data sets
used: (a) LARS, (b) Lasso and ElasticNet, (c) Stepwise, (d) Ridge

6.4 Analysis of model complexity and stability

The forth stage investigates complexity and stability of the models given by feature selection
methods.

The fig. 11 shows plots of model stability R = lnκ versus the model complexity C = |A|
for the inadequate and correlated data sets since the parameter of multicollinearity k = 0.2

and k = 0.8. The models are obtained by the illustrative feature selection methods. Every
investigated method demonstrates decreasing model stability R = lnκ with the fixed model
complexity C = |A| while the parameter of multicollinearity k rises from 0.2 to 0.8.

The fig. 12 shows the plots of the model stability R = lnκ versus the model complexity
C = |A| for the adequate and redundant data sets since the parameter of multicollinearity
k = 0.2 and k = 0.8. The models are obtained by the illustrative feature selection methods.
Lasso gives more stable and less complex model in contrast to other feature selection methods
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Figure 8: Plot of the number of the limit error function s0 versus the redundant features d for
the inadequate and correlated data set: (a) k = 0.2, (b) k = 0.8
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Figure 9: Plot of the number of the limit error function s0 versus the redundant features d for
the adequate and redundant data set: (a) k = 0.2, (b) k = 0.8

since rising the parameter of the multicollinearity k.
The fig. 13 shows the plots of the model stability R = lnκ versus the model complexity

C = |A| for the adequate and correlated data sets since the parameter of multicollinearity
k = 0.2 and k = 0.8. The models are obtained by the illustrative feature selection methods.
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Figure 10: Plot of the number of the limit error function s0 versus the redundant features d for
the adequate and correlated data set: (a) k = 0.2, (b) k = 0.8
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Figure 11: Number of the selected features |A| and logarithm of the condition number κ of the
matrix XTX for inadequate and correlated data sets

Stepwise gives more stable and less complex model since rising the parameter of multicollinearity
k in contrast to other feature selection methods.

The fig. 14 shows the plots of the model stability R = lnκ versus the model complexity
C = |A| for considered data sets. Every point on the fig. 14 corresponds to the some value of
the parameter of multicollinearity k from 0.2 to 0.8.
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Figure 12: Number of the selected features |A| and logarithm of the condition number κ of the
matrix XTX for adequate and redundant data sets
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Figure 13: Number of the selected features and logarithm of the condition number κ of the
matrix XTX for adequate and correlated data sets

7 Conclusion

This paper studies the performance of the feature selection methods for data sets of multi-
collinear features. We propose the test data sets generation procedure to test feature selection
methods performance and the criterion of the selected features redundancy to rank feature
selection methods by their solution of the multicollinearity problem. Experiments show that
Lasso solves the multicollinearity problem for the adequate redundant data sets, Stepwise —
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(a) Inadequate correlated data set
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(b) Adequate redundant data set
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(c) Adequate correlated data set

Figure 14: Complexity and stability of the obtained models using considered feature selection
methods since the parameter of multicollinearity k increases from 0.2 to 0.8

for the adequate correlated data sets. None of the considered feature selection methods solves
the multicollinearity problem for the inadequate correlated data sets. LARS shows the absence
of the relevant features to fit the target vector for the inadequate correlated data sets. The
criterion of the selected features redundancy shows that the stable models are given by the
same feature selection methods since the parameter of multicollinearity k is small or large. At
the same time, the plot of the limit error s0 versus the number of the redundant features d is
approximately the same in the one kind data sets since the parameter of multicollinearity k is
small or big. All considered methods give unstable models for inadequate correlated data sets,
Lasso gives the most stable model for adequate redundant data sets, LARS and Stepwise give
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the most stable models for adequate correlated data sets.
The source code of the proposed test data sets generation procedure can be downloaded

from [19].
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[10] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. J.
Mach. Learn. Res., 3:1157—1182, 2003.

[11] Verónica Bolón-Canedo, Noelia Sánchez-Maroño, and Amparo Alonso-Betanzos. A review
of feature selection methods on synthetic data. Knowl. Inf. Syst., 34(3):483–519, 2013.

[12] L Ladha and T Deepa. Feature selection methods and algorithms. International Journal
on Computer Science & Engineering, 3(5), 2011.

[13] M. El-Dereny and N. I. Rashwan. Solving multicollinearity problem using ridge regression
models. Int. Journal of Contemp. Math. Sciences, 6:585 — 600, 2011.

21



[14] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267–288, 1994.

[15] B. Efron, T. Hastie, and R. Tibshirani. Least angle regression. Ann. Statist, pages 407–499,
2004.

[16] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society, Series B, 67:301–320, 2005.

[17] Ranjit Kumar Paul. Multicollinearity: Causes, effects and remedies. Technical report,
Working paper, unknown date. Accessed Apr. 23, 2013, http://pb8.ru/7hy, 2006.

[18] Strijov Vadim, Krymova Ekaterina, and Weber Gerhard-Wilhelm. Evidence optimization
for consequently generated models. Mathematical and Computer Modelling, 57(1-2):50–56,
2013.

[19] A. Katrutsa. Source code of the test data sets generation procedure. http://bit.ly/

1qLMyiO, 2014.

22

http://bit.ly/1qLMyiO
http://bit.ly/1qLMyiO

	Introduction
	Feature selection problem statement
	Multicollinearity analysis in feature selection
	Variance inflation factor
	The Belsley criterion

	Test data set generation procedure
	The criterion of the selected features redundancy
	Computational experiment
	Comparing feature selection methods
	VIF-analysis of multicollinearity
	Analysis of the feature selection methods redundancy
	Analysis of model complexity and stability

	Conclusion



