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Abstract

This paper presents a new fast clustering algorithm RhoNet, based on the metric con-

cenration location procedure. To locate the metric concentration, the algorithm uses a

reduced matrix of pairwise ranks distances. The key feature of the proposed algorithm

is that it doesn’t need the exhaustive matrix of pairwise distances. This feature reduces

computational complexity. It is designed to solve the protein secondary structure recog-

nition problem. The computational experiment collects tests and to hold performance

analysis and analysis of dependency for the algorithm quality and structure parameters.

The algorithm is compared with k-modes and tested on different metrics and data sets.
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1. Introduction

This paper investigates the problem of the large data sets clustering in metric spaces. We

propose a clustering method based on the metric concentration search procedure. A metric

concentration is a dense subset of the given data set in metric space. This subset must satisfy

the following condition: it consists of as many elements as possible while the inner cluster

distance is relatively small.

Currently the most common clustering algorithm based on the notion of density is DB-

SCAN (Density-based spatial clustering of applications with noise) [10] and its extensions [11, 6].

The DBSCAN cluster consists of the elements from the neighborhood of the centers of the

density-connected metric balls. The important problem is to find a metric ball containing the

maximum elements inside. The required dense subset is the maximum union of the such balls.

The CURD algorithm [11] develops the idea of DBSCAN and constructs a graph with the cores

in its vertices. If the distance between two cores is less than some distance threshold then the

vertices corresponding to these cores are linked by an edge. After that, the graph is parti-

tioned on the set of disconnected subgraphs forming the clusters. The paper [6] presents an

agglomerative hierarchical clustering algorithm ROCK, based on the notions of neighbors and

links. Desirable clustering structure is obtained by merging clusters with the common links or

neighbors.

As an application of the metric concentration search method we consider the problem

of the frequency dictionary construction of the amino acid residues of the protein primary

structure. The chains of the amino acid residues database consists of the 11 million records,

the length of every record is 20–33000 symbols [3, 4]. That size of the given data leads to the

restrictions on the algorithm complexity. In particular, it becomes impossible to compute all

distances between every pair of elements from the data set.

To reduce the computational and memory complexity we use a vantage points idea [14].
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According to this idea, the distance function is computed between all elements in data set and

elements of a small subset further called ρ-net. To estimate the distance between any pair

of elements of the data set we use a distance between this pair of elements and elements of

the ρ-net. For a good approximation of the required distance the distance function should

satisfy triangle inequality. This approach allows to reduce computational complexity of the

proposal algorithm. Therefore, the proposed metric concentration search algorithm consists of

the following steps:

1) define a metric function for elements in a data set;

2) define the ρ-net subset;

3) compute the distances between elements of the ρ-net and elements of the data set;

4) find metric concentration as the maximum intersection of the relative neighbors.

The fourth step is carried through the search of the joint neighbors of ρ-net elements. To search

the nearest neighbors the distances to an element of the ρ-net are sorted.

The proposed algorithm is compared with k-means [7, 9] algorithms, adapted for solving

fast clusterization problem in linear metric spaces. Two stages k-means algorithm [13, 12]

composed of the fast and slow stages. The fast stage computes expected clusters centers from

the subset of the given data set. The size of the subset is much less than the total size of the

data set. The slow stage computes the distances between all elements and all centers obtained

on the fast stage. The k-modes algorithm [8] is a modification of the k-means algorithm for

the categorical data. The modification of the k-means algorithm uses different dissimilarity

measures and replaces means with mode values.

The computational experiment shows the performance of the considered algorithms on

the different quality measures and the dependence quality of the proposal algorithm on the

structure parameters. Experiments are carried out on the synthetic data sets and the real data
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set from the repository UCI [5].

2. The metric concentration search problem

Consider a set of elements X = {x1, . . . ,xN} in a metric space with given metric ρ. Suppose

the set X(c|r) contains an element xi ∈ X such that xi belongs to a metric ball of radius r

centered at c ∈ X,

X(c|r) = {xi ∈ X| ρ(xi, c) ≤ r}.

Definition 1. The metric concentration is a set C(r) = X(ĉ|r) such that the metric ball of

radius r centered at the element ĉ ∈ X contains maximum number of elements in the set X,

ĉ(r) = argmax
c∈X
|X(c|r)|, (1)

where ĉ(r) is called the center of the metric concentration.

Note that the metric concentration location problem differs from the standart clustering

problem. The standart clustering problem is to find a cluster with the minimum distance

between elements, but the problem (1) is to find a set of some fixed radius with maximum

cardinality.

The triangle inequality and the metric concentration search problem solving. To

reduce the computational complexity and the required memory we propose to compute a rect-

angular matrix of distances between the elemenets from X and the elements from a small subset

R ⊂ X instead of computing the exhaustive pairwise distances matrix.

Definition 2. Consider an element z ∈ X. The z-relative distance between elements x,y ∈ X

is callled the distance ρz(x,y) such that

ρz(x,y) = |ρ(z,x)− ρ(z,y)|. (2)
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From the triangle inequality it follows the important fact such that:

ρz(x,y) ≤ ρ(x,y) ∀z ∈ X. (3)

The inequality (3) means that for any element z ∈ X the z-relative distance ρz(x,y) is the

lower bound for a given distance ρ(x,y). Introduce ρ-net, a set of elements R ⊂ X further

called ρ-net. Denote by ρR(x,y) an R-relative distance between elements x,y ∈ X such that

ρR(x,y) is the maximum z-relative distance over all elements from the set R:

ρR(x,y) = max
z∈R

ρz(x,y).

Note that the X-relative distance equals some given distance ρ(x,y):

ρX(x,y) = ρ(x,y).

To construct a fast clustering algorithm we must evaluate these pairwise distances and construct

a sparse set

R ⊂ X,where |R| � |X|,

such that an R-relative distance for every pair of elements is an upper bound of given distance

ρ(x,y) with the constant c0,

ρR(x,y) ≥ c0ρ(x,y), ∀x,y ∈ X. (4)

The constant c0 and the inequality (4) are needed to prove the feasibility of the approach

proposed below. After here we omit this constant. From the inequality (4) it follows that a

sparse set R ⊂ X is sufficient to approximate distances between all elements in X with some

accurancy. Note that if (4) is satisfied, then it is possible to find approximate solution of the

problem (1) in the form

ĉ(r) = argmax
c∈X

∣∣∣∣∣⋂
z∈R

X(z, c|r)

∣∣∣∣∣ , (5)

where

X(z, c|r) = {xi ∈ X| ρz(xi, c) ≤ r} (6)

is the z-relative metric ball for the element z ∈ R of radius r centered at the element c.
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Problem statement for the metric concentration location search problem. Refor-

mulate the problem (5) using given number of nearest neigbours of the center of a metric

concentration instead of given radius r. This formulation allows to develop the constructive

algorithm to solve the problem (1). Let the parameter w ∈ N be the number of the considering

nearest neighbours. Denote by X(z, c|w) a set containing first w elements in the ascending

ordered z-relative distance array, where z ∈ R. Call an estimation of the metric concentration

the intersection of the sets X(z, c|w) for all elements z of the set R:

Ĉ(w) =
⋂
z∈R

X(z, ĉ|w), where ĉ(w) = argmax
c

∣∣∣∣∣⋂
z∈R

X(z, c|w)

∣∣∣∣∣ . (7)

Efficiency of this estimation follows from next claim. If two elements are z-relative adjacent,

then they are adjacent in the metric ρ for all z ∈ R. Note that using distance ranks instead of

linear distance values makes this approach more stable.

3. The metric concentrations location procedure

To solve the problem (7) we propose the following procedure to locate the metric concentration.

Construct the ρ-net R as a subset of X. Suppose the ρ-net

R = {xj|j ∈ I}

satisfies inequality (4). The ρ-net R is an inner subset of X, R ⊂ X with some fixed cardinality

n. Construct the set R such that the distance between its nearest elements is maximum. By

assumption, number of points N � n. To construct the set R use the following iterative

procedure.

1. Let the initial set be empty, R = ∅.

2. For some given element y ∈ X select

x′ = argmax
x∈X

ρ(x,y);
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then add the element x′ to the set R := R ∪ x′.

3. While |R| < n compute

x′ = argmax
x∈X

min
z∈R

ρ(x, z),

add element x′ to the set R := R ∪ x′.

The complexity of this procedure is O(n2N), where n2 � N , it is linear to the number

of objects.

Estimate the metric concentration. To find the set Ĉ(w) from (7), construct the re-

duced (n × N)-matrix D of pairwise distances between elements zj of the ρ-net R and all

elements xi of the set X:

D(j, i) = ρ(zj,xi), zj ∈ R, xi ∈ X,

where j is the index of an element from the ρ-net R, i is the index of an element from the set

X. Denote by D′ a matrix such that j-th row of the matrix D′ consists of the indexes of the

elements belonging to the set X and not belonging to the set R. These row elements of D′ are

sorted in increasing order. For the sorted matrix D′ locate the metric concentration:

Ĉ(w) =
⋂
zj∈R

X(zj, ĉ|w). (8)

We propose the following three-step procedure to locate the metric concentration (8).

1. For any element xi ∈ X find a subset X(zj,xi|w) from (6) as a zj-relative set consisting

of w nearest neighbours for all elements zj ∈ R. For fast nearest neighbours search the

j-th row of the matrix D′ is used.

2. For any element xi ∈ X find the set

⋂
zj∈R

X(zj,xi|w)

as the intersection of the zj-relative nearest neighbour sets for all zj ∈ R.
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3. Find the center ĉ(w) of the metric concentration (8) as the center of the intersection with

maximum cardinality,

ĉ(w) = argmax
c∈X

∣∣∣∣∣∣
⋂
zj∈R

X(zj, c|w)

∣∣∣∣∣∣ .
Clustering procedure using metric concentration In this section we describe the consec-

utive metric concentration estimation procedure. This procedure removes elements xi ∈ Ĉ(w)

from the set X, where the estimation Ĉ(w) is obtained iteratively and repeates the metric

concentration search. This procedure obtaines estimations of the metric concentrations Ĉj(w).

Partition the set X

X =
K⊔
k=0

Ĉk(w),

where K is some given number of concentrations and Ĉ0(w) a set of non-clustered elements

xi ∈ X. Therefore, the set X is partitioned into K clusters. The clusters are the estimations

of the metric concentrations Ĉ1(w), ..., ĈK(w).

Illustrate the proposed algorithm on the Fig. 1. Here the elements of the set X are

the points in the 2-dimensional euclidean space. By A,B,C denote the points of the ρ-net.

The cluster is the set of points belonging to the intersection of the rings formed by the circles

centered at the points of the ρ-net. The radius of the smaller circle, centered at the point A,

equals 0. The circles corresponding to the point C haven’t been shown because the ring they

formed fully include concentration shown by cross. The dash circle is centered at the point A.

The solid circles are centered at the point B. The cluster, emphasized by crosses, is formed by

the intersection of 3 rings, centered at the points of the ρ-net.

Optimization of parameters. The algorithm includes two parameters: w is the number

of neighbours and n is the number of the elements of the ρ-net. The parameter w is chosen

according to the following assumptions. Introduce the concentration density κ as the ratio of
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the number of neighbours w to the size of the data set N :

κ = w/N.

The concentration density approximately equals the ratio of the metric concentration radius r

to the diameter of the data set, max
x,y∈X

ρ(x,y):

κ ≈ r

max
x,y∈X

ρ(x,y)
.

That is, the relation between the number of the neighbours w and the metric concentration

radius r is proportional to the concentration density κ.

4. Algorithm k-modes

The basic algorithm k-modes to compare with is presented in [8]. This algorithm extends the

k-means principle to categorical data using some metric for categorical data instead of euclidean

distance. In [8] the metric is similar to the metric Overlap (11) with the weights ps = 1 and

s = 1, . . . , d. Further, we will use this metric, except for some cases.

In this case and further the set of elements X = {x1, . . . ,xN} is the set of words

xi, i = 1, . . . , N , each word xi is the set of letters. Denote by xis the s-th letter in the

word xi. The set X and the number of clusters K are given. One must partition the set X:

X = Y1 t . . . t YK , where Yk consists of the elements from k-th cluster.

Denote by Y the set of centers, Y = {yk, k = 1, . . . , K}. The center of the cluster Yk

is the word yk such that the every letter yks is the most frequent s-th letter among all words

belonging to the set Yk. The clustering procedure starts with the initialization of the cluster

centers yk, k = 1, . . . , K.

In our implemetation of the k-modes algorithm the first K distinct words are selected

as the initial K centers of the clusters. Suppose that the order of the words xi is random and

9



the first K words belong to the different clusters. This initializaition method is proposed in [8]

and used in the performance analysis.

The alternative method of initializaition of the centers yk selects the most distant words

from X.

The sets Y t
1 . . . Y

t
K partition the set X at every iteration t. Suppose the clusters remain

unchanged if for k = 1, . . . , K there exists the bijection

g : Y t
k → Y t+1

k , (9)

where Y t
k is the k-th cluster at t-th iteration. Execute the following steps, while this mapping

doesn’t exist for all clusters:

1. At t-th iteration allocate every word xi to the cluster Y t
k if the distance between this word

xi and the center yk is the smallest, i.e.

xi ∈ Y t
k , k = arg min

k=1,...,K
ρ(xi,yk).

2. Update the centers yt
k of the clusters Y t

k according to the current partition of the set X in

the following way. The letter ytks equals the most frequent s-th letter among all elements

belonging to the cluster Y t
k :

ytks = argmax
l∈Qs

∑
x∈Y t

k

[xs = l],

where Qs is the set of possible s-th letters, xs is the s-th letter of the word x. The indicator

function [xs = l] equals one iff the equality xs = l is true and equals zero otherwise.

The centers yk may not belong to the set X after update. As soon as the clusters are

unchanged, i.e. there exists the mapping (9), the clustering procedure is finished.

5. Distance functions for categorical data

Consider two words x = [x1, ..., xd]
T and y = [y1, ..., yd]

T. A distance function ρ(x,y) between

words x,y must be a metric. Therefore, the following statements must be satisfied:
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1) identity: ρ(x,y) = 0⇔ x = y;

2) symmetry: ρ(x,y) = ρ(y,x);

3) triangle inequalitiy: ρ(x, z) 6 ρ(x,y) + ρ(y, z).

Define some metrics using in proposal approach.

Ordered (SO) and unordered (SU) symmetric defference of two sets Define this

distance function between words x and y as

ρ(x,y) =
|x|+ |y| − 2S(x,y)

|x|+ |y| − S(x,y)
. (10)

In case of the unordered symmetric defference the function S(x,y) is the cardinality of the

intersection of the words x and y. By | · | denote the set cardinality, in this case it equals the

size of the word.

In case of the ordered symmetric defference the function S(x,y) is the size of the longest

common subsequence in words x and y. The cardinality of the longest common subsequence

equals the length of the cheapest diagonal way defining in the next paragraph. The matrices of

the pairwise distances for these metrics are shown in Fig. 2, 3.

Optimal alignment (OA) To compute this function find the optimal alignment between

the ordered elements of two words. The distance between two letters is the boolean function ω:

ω(xi, xj) =


1, if xi 6= yj,

0, otherwise.

To compute the distance between words find the cost matrix P (d+1×d+1). Denote the index

of the first row by i = 0, and the index of the first column by j = 0. Assign P (0, 0) = 0. For all

i = 1, . . . , d and j = 1, . . . , d assign P (0, j) = P (i, 0) =∞. For all i = 1, . . . , d and j = 1, . . . , d

we sequentially compute all elements of the matrix P :

P (i, j) = ω(xi, yj) + min
(
P (i− 1, j − 1), P (i− 1, j), P (i, j − 1)

)
.
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The distance between words is the element in d-th row and d-th column of the matrix P :

ρ(x,y) = P (d, d).

Note that this distance function is a metric and the case of the Levenstein’s distance.

The matrix of pairwise distances for ρ(x,y), is shown in the Fig. 4. The cost matrix

P for the optimal alignment is shown in the Fig. 5 with d = 8. The cheapest way is shown by

dots. The start and the end of this way is fixed in elements with indices (0, 0) and (7, 7).

Weighted distance between words Define the similarity measure between two words x,y

as the weighted sum of the similarities between their letters:

sim(x,y) =
d∑

s=1

hssims(xs, ys),

where hs is the weigth assigned the s-th letter, xs, ys is s-th letter in words x,y, d is the words

length. Define the distance function as:

ρ(x,y) = 1− 1

sim(x,y)
.

To find the distance ρ(x,y): 1) find the similarities sims(xs, ys) between all letters in words

x,y; 2) define the weigths assisgned every letters.

Consider the matrix M of the pairwise distances between all possible values of the

s-th letter. The 0-th row and column consist of the possible values taken the s-th letter. The

element M(i, j) equals the similarity between the i-th and the j-th possible values taken the

s-th letter, i, j = 1, . . . , |Qs|, where |Qs| is the number of the possible values taken the s-th

letter.

Test the proposal algorithm with three types of similarity functions, according to usage

of elements of the matrix M .
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1. Similarity function uses only diagonal elements of the matrix M :

sims(xs, ys) =


p, if xs = ys,

0, otherwise,

(11)

where p shows the dependence between the similarity s-th letters in the words x,y and

similarity corresponding words. The weights hs = 1
d
for all letters.

For distance function Overlap the parameter p = 1 and the weights hs = 1
d
, s = 1, . . . , d.

2. Similarity function uses only non-diagonal elements of the matrix M :

sims(xs, ys) =


1, if xs = ys,

q, otherwise,

where q shows the dissimilarity between the s-th letter in the words x,y and dissimilarity

of the corresponding words. The weights hs = 1
d
are similar to the previous case.

In particular, for the distance function Goodall1

q = 1−
∑
l∈Qs

p̃s(l), p̃s(x) =
fs(x)(fs(x)− 1)

N(N − 1)
,

where N is the size of the data set, Qs is the set of the possible values of s-th letter and

fs(x) is the number of times s-th letter takes a value x in the data set. If s-th letter

doesn’t take the value x, then fs(x) = 0. The weights hs = 1
d
, s = 1, . . . , d.

3. Similarity function uses both diagonal and non-diagonal elements of the matrix M :

sims(xs, ys) =


p, if xs = ys,

q, otherwise.

Equalities for p, q and weights based on information-theoretic framework for similarities.

In particular, for the distance function Lin1:

p =
∑
l∈Q

log p̂s(l),
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q = 2
∑
l∈Q

log p̂s(l),

where p̂s(x) = fs(x)N
−1, other notations are similar to the previous case. The weights

hs =

(
d∑

s=1

∑
l∈Q

log p̂s(l)

)−1
.

6. Analysis of the complexity and required memory

The proposed RhoNet algorithm is compared with the algorithms from [6, 11, 10, 8] based

on two criteria: complexity and required memory. Table 1 shows the algorithm complexity

and the required memory dependence on the size of a data set, the size of a ρ-net and on the

parametersma, mm, m, i, k of the algorithms from [6, 11, 10, 8]. Note that the required memory

for RhoNet algorithm increases sublinearly with increasing size of the data set in contrast to

the other algorithms.

7. Computational experiments and performance analysis

The proposed RhoNet algorithm is tested on the synthetic data sets and the data set Mush-

room [2] from the repository UCI [5]. The synthetic data set is generated by the procedure

describing below.

Real data set description. The mushroom data set from the repository UCI consists of

8124 objects, described by 22 letters. Every object can be represented as a word. One has to

a cluster the data set for poisonous and edible mushroom. The cluster for object is known, so

it is possible to use clustering error Ek for cluster k.

Synthetic data sets description. The synthetic data sets were generated according to the

following parameters. An m × u matrix A consists of every possible letters, where m is the

number of letters, u is the number of possible values taken by every letter, the size of the

14



data set N , the number of the clusters K, the distance function ρ and the maximum distance

between two generated objects

maxdist = max
xi,xj∈X

ρ(xi,xj);

the portion varcent ∈ (0; 1) of the maximum distance maxdist equals the minimum distance

between the centers yk, k = 1, . . . , K of the generated clusters

ρ(yi,yj) ≥ varcent ·maxdist, i, j = 1, . . . , K;

the distance variation varobj between every next word from the current

ρ(xi,xi−1) < varobj ·maxdist, i = 1, . . . , N.

The data generation procedure DataGen executes two stages: the first stage is genera-

tion of centers yk, k = 1, . . . , K for every cluster, the second stage is generation of the words for

every clusters. To create the centers the values from the matrix A are selected randomly. The

centers are created if the distance between every pair of centers is more than varcent ·maxdist:

ρ(yj,yi) > varcent ·maxdist, i 6= j; i, j = 1, . . . , K.

Denote the number of words in every cluster by Nk = bN/Kc, k = 1, . . . , K. Suppose the

difference in the number of words between clusters is no more than 1. After that, the Nk ×m

submatrix Xk consists of the words belonging to the k-th cluster is created. Every matrix is

initialized with Nk copies of the cluster center. Further, the number of the letters in every

copy, except the first, is changed at random. Suppose the word xi, i = 2, . . . , Nk from the k-th

cluster is created if it satisfies all following conditions:

it doesn’t equal the center of the k-th cluster;

it doesn’t equal the word xi−1;

the distance between the word xi and xi−1 is less than varobj ·maxdist, i.e. ρ(xi,xi−1) <

varobj ·maxdist.
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This procedure executes for every cluster. After that, the rows of the matrix X concatenates

the rows of the matrices Xk, k = 1, . . . , K, Finally, these rows are randomly permutated.

Quality measures. We use the following quality measures to compare the algorithms. By Ek

denote the number of clustering error for k-th cluster, if the cluster for every element is given:

Ek =

Nk∑
i=1

[ki 6= ai]

N∑
i=1

[k = ai]

,

where ki is given cluster for the i-th element, ai is a cluster for the i-th element defining by

algorithm, Nk is the size of the k-th cluster defining by algorithm. By F1 denote the cluster

mean external distance:

F1 =

∑
i<j

[ai 6= aj]ρ(xi,xj)∑
i<j

[ai 6= aj]
,

where ρ(xi,xj) is given distance function. By F0 denote the cluster mean inner distance:

F0 =

∑
i<j

[ai = aj]ρ(xi,xj)∑
i<j

[ai = aj]
,

where ρ(xi,xj) is given distance function.

Comparison of the algorithms. Table 2 shows the value Ek for poisonous (Po) and edible

(Ed) mushroom. The values of quality measures F0 and F1 are shown in Table 3, which is

similar to the Table 2.

The synthetic data set was generated for every distance function with the following

parameters: N = 200, m = 6, K = 4, varcent = 1, varobj = 0.4 and the maximum distance

maxdist, corresponding given distance function. To generate these data sets the algorithm

describing early is used. The quality measures using for compare are the mean inner and

external cluster distances F0, F1. For the RhoNet algorithm the part of non-clustered elements

is computed additionally. The RhoNet and k-modes algorithms are run on the same data sets

corresponding every given distance function. Next in this section we use the distance function

Overlap (11).
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The results of applying k-modes algorithm to the generated data sets are shown in

Table 4, the number of clusters K used in the algorithm equals the number of generated

clusters. There are using metrics in the columns. The quality measures are F0 and F1.

Because of the strong dependence the RhoNet algorithm on the parameters, the results

of applying it to the generated sets can’t be shown in the table like the results of the k-modes

algorithm. To demostrate the results applying the RhoNet algorithm to the data sets the

iterative procedure is designed. By i denote the number of iteration corresponding to the fixed

pair of the parameters: the number of the elements in the ρ-net and the concentration desity κ.

The number of the elements in the ρ-net is changed from 2 to 9 with step equals 1. The

concentration density is changed from 0.1 to 0.9 with step equals 0.05 (b = 17). The results

are shown in Fig. 6, 7, 8, 9. The equalities for defining parameters n and κ from the iteration

number i are follows: n =
⌊
i
b

⌋
+ 2, κ = 0.1 + 0.05 · (mod(i, (b+ 1))− 1).

7.1. Properties the RhoNet algorithm

To test RhoNet algorithm on the synthetic data sets for every distance function, seven data

sets are generated with the following parameters: m = 6, N = 200, K = 4, varcent = 1,

varobj = 0.4 and maximal distance maxdist, corresponding given distance function. All data sets

are generated using procedure DataGen. For all generated data sets we obtain the dependence

mean inner and external cluster distances on the size of the ρ-net n and the concentration

density κ.

The forms of the dependence the mean external and inner cluster distances on the

concentration density for 3 points in ρ-net and distance function Overlap are shown in the

Fig. 10 and 11.

The forms of the dependence the mean external and inner cluster distances on the

concentration density for 3 points in ρ-net and distance function SO are shown in the Fig. 12
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and 13. Every line on the graphs corresponds to one generated data set.

The forms of the dependence the mean external and inner cluster distances on the

number points in the ρ-net for concentration density equals 0.5 and distance function Overlap

are shown in the Fig. 14 and 15.

The forms of the dependence the mean external and inner cluster distances on the

concentration density for 3 points in ρ-net and distance function SO are shown in the Fig. 16

and 17

8. Conclusion

In this paper we propose the metric concentration search algorithm RhoNet. The key feature

of the proposal algorithm is using reduced matrix of pairwise distances between the elements

of the ρ-net and all elements of the data set. Consequently the required memory is O(nN)

rather than O(N2), where N is the size of the data set, n is the size of the ρ-net and n� N .

The experiments show that quality of the proposal algorithm isn’t lower than quality of the

k-modes algorithm. The quality measures are mean cluster inner and external distances. The

dependence from using distance function is weak. The experiments can be reproduced using

the code and the dataset from [1].
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Table 1: Algorithm comparison. There are the names of comparison algorithms in the first

column. Complexity and required memory of the comparison algorithms are in the second and

third columns. The comments are in the last column

Algorithm Complexity Required memory Assumptions

RhoNet O(KnκN2) O(nN) n� N , κ < 1

ROCK [6] O(Nmmma +N2 logN). O(min
(
N2, Nmmma

)
) ma � N , mm . N

CURD [11] O(N(m+ ik)) O(N) +O(K) k, i,m� N

DBSCAN [10] O(N logN) O(N2)

k-modes [8] O(NKi) O(N2)
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Table 2: Algorithms compare through the clustering error Ek using mushroom data set from

the UCI repository. There are the distance functions using in the algorithms in the columns.

Comparison algorithms with their parameters between parentheses are in the rows

Overlap Godall1 SymmOrd SymmUnord Lin1 OA

RhoNet

(n = 2,

κ = 0.8)

Po 0.399 0.405 0.396 0.426 0.391 0.419

Ed 0.255 0.273 0.236 0.434 0.252 0.262

RhoNet

(n = 3,

κ = 0.8)

Po 0.518 0.479 0.528 0.541 0.549 0.402

Ed 0.482 0.435 0.491 0.503 0.508 0.342

k-modes

(K = 2)

Po 0.435 0.437 0.223 0.324 0.434 0.381

Ed 0.419 0.427 0.202 0.346 0.427 0.393
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Table 3: Algorithms compare through the quality measures F0 and F1 using mushroom data

set from the UCI repository. There are the distance functions using in the algorithms in the

columns. Comparison algorithms with their parameters between parentheses are in the rows

Overlap Godall1 SymmOrd SymmUnord

RhoNet

(n = 2,

κ = 0.8)

F1 11.52 1.53 0.897 0.53

F0 10.53 1.45 0.863 0.48

RhoNet

(n = 3,

κ = 0.8)

F1 11.50 1.52 0.896 0.52

F0 10.46 1.42 0.861 0.49

k-modes

(K = 2)

F1 12.14 6.93 0.911 0.55

F0 9.86 4.62 0.846 0.46
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Table 4: The values of the quality measures F0 and F1 after test the k-modes algorithm on the

generated data sets. The distance functions using in the algorithm are in the columns

Overlap SO SU OA

k-modes (K = 4)
F1 0.85 0.92 0.83 2.98

F0 0.75 0.41 0.73 2.52
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Fig. 1 illustrates the applying of the proposal algorithm to the data set in the 2-

dimensional euclidean space.

Fig. 2 shows the matrix of pairwise distances for the SO metric

Fig. 3 shows the matrix of pairwise distances for the SU metric

Fig. 4 shows the matrix of pairwise distances for the DTW metric

Fig. 5 shows the cost matrix for the DTW metric. The cheapest way is shown by dots.

Fig. 6 shows possible values of considering quality measures after applying RhoNet

algorithm with the Overlap distance function to the generated data set.

Fig. 7 shows possible values of considering quality measures after applying RhoNet

algorithm with the SO distance function to the generated data set.

Fig. 8 shows possible values of considering quality measures after applying RhoNet

algorithm with the SU distance function to the generated data set.

Fig. 9 shows possible values of considering quality measures after applying RhoNet

algorithm with the DTW distance function to the generated data set.

Fig. 10 shows the form of the dependence the mean external cluster distance of the

concentration density for 7 synthetic data sets with 3 points in ρ-net, distance function is

Overlap.

Fig. 11 shows the form of the dependence the mean inner cluster distance of the

concentration density for 7 synthetic data sets with 3 points in ρ-net, distance function is

Overlap.

Fig. 12 shows the form of the dependence the mean external cluster distance of the

concentration density for 7 synthetic data sets with 3 points in ρ-net, distance function is SO.

Fig. 13 shows the form of the dependence the mean inner cluster distance of the

concentration density for 7 synthetic data sets with 3 points in ρ-net, distance function is SO.

25



Fig. 14 shows the form of the dependence the mean external cluster distance of the

number points in ρ-net for 7 synthetic data sets with concentration density equals 0.5, distance

function is Overlap.

Fig. 15 shows the form of the dependence the mean inner cluster distance of the

number points in ρ-net for 7 synthetic data sets with concentration density equals 0.5, distance

function is Overlap.

Fig. 16 shows the form of the dependence the mean external cluster distance of the

number points in ρ-net for 7 synthetic data sets with concentration density equals 0.5, distance

function is SO.

Fig. 17 shows the form of the dependence the mean inner cluster distance of the

number points in ρ-net for 7 synthetic data sets with concentration density equals 0.5, distance

function is SO.
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