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4 - Technological Superiority
Jens Leth Hougaard, Mette Asmild

We develop a theoretical framework for analyzing technological possi-
bilities. We consider fundamental properties of technology indexes and
demonstrate that previous approaches violate a central axiom dubbed
monotonicity in possibilities. From the axiomatic analysis emerge two
canonical types of indexes: one based on the volume, and one based
on the cardinality of the dominance set. We define a binary superiority
relation where both types of indexes have to point in the same direction
before concluding that one subset is superior to another.
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1 - Optimizing Online Advertising Budget Allocation
across Multiple Placements
Jian Yang, Pengyuan Wang

Big online advertisers are typically faced with a challenging problem in
campaign management: how to allocate advertising budget across mul-
tiple placements in order to maximize Return on Investment (ROI). We
develop a Multi-Touch Attribution (MTA) methodology based on both
observation and experimentation to measure ad effectiveness across
multiple placements. The MTA empowers a simulator that provides
advertisers with what-if analysis for budget allocation. We also build
an optimization model using the MTA results to maximize the total ad
effectiveness for advertisers, and hence their ROI.

2 - A Class of Nonlinear Allocation Problems with Het-
erogeneous Substitution
Huaxia Rui, De Liu, Andrew Whinston

We study the problem of efficiently allocating multiple types of goods
(workloads) to multiple agents when different types of goods (work-
loads) are substitutable and the rates of substitutation differ across
agents. We derive theoretical properties of such problems that enable
us to design an extremely fast algorithm called SIMS for solving such
problems. We expect the SIMS algorithm to work well for real-time
applications with time-constrained allocation problems such as the al-
location of online advertisement.

3 - The Least Cost Influence Problem
Rui Zhang, Dilek Gunnec, S. Raghavan

We analyze the diffusion process of a product over a social network
while incentives are provided to the individuals. Such catalysation ad-
dresses the trade-off of minimizing the amount of incentives given and
reaching a greater number of buyers. This problem is NP-Hard for
general networks. However, we show that it is polynomially-solvable
on tree networks under the assumption that all neighbors of a node
exert equal influence. Next, we propose a totally unimodular integer
programming formulation based on the insight that the influence prop-
agation network must be a directed acyclic graph.

4 - Foundations of Social Network Ad Optimization
John Turner

We introduce revenue optimization models for placing ads in social
networks, motivated by the connectivity structure of the underlying
graph. We discuss some pros and cons of the underlying models, and
illustrate our approach using real social graphs.
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1 - Multimodelling and Object Selection for Banking
Credit Scoring
Alexander Aduenko, Vadim Strijov

To construct a bank credit scoring model one must select a set of in-
formative objects (client records) to get the unbiased estimation of the
model parameters. This set must have no outliers. The authors pro-
pose an object selection algorithm for mixture of regression models. It
is based on analysis of the covariance matrix for the parameters esti-
mations. The computational experiment shows statistical significance
of the classification quality improvement. The algorithm is illustrated
with the cash loans and heart disease data sets.

2 - Comparison of Different Clustering Algorithms
Based PCF Classifiers
Emre Çimen, Gurkan Ozturk

In this study we dealt with generating different clustering algorithms
based polyhedral conic classifiers. The main purpose of using cluster-
ing algorithms to generate PCF based classifiers is to determine the
number of PCF’s and divide the sets to the smaller parts. By this
way stronger classifiers can be constructed. Expectation Maximiza-
tion (EM) and k-Means based algorithms are implemented and tested
on well-known literature test problems.

3 - Multicollinearity: Performance Analysis of Feature
Selection Algorithms
Alexandr Katrutsa, Vadim Strijov

We investigate the multicollinearity problem and its influence on the
performance of feature selection methods. The paper proposes the test-
ing procedure for feature selection methods. We discuss the criteria for
comparing feature selection methods according to their performance
when the multicollinearity is present. Feature selection methods are
compared according to the other evaluation measures. We propose
the method of generating test data sets with different kinds of multi-
collinearity. Authors conclude about the performance of feature selec-
tion methods if the multicollinearity is present.

4 - Data Mining Application with Decision Tree Algo-
rithms for the Evaluation of Personal Loan Cus-
tomers’ Repayment Performances
Aslı Çalış, Ahmet Boyacı, Kasım Baynal

Data mining techniques are used extensively in banking area such as
many areas. In this study, conducted in banking sector, it was aimed
to analysis of available personal loan customers and estimate potential
customers’ repayment performances with decision tree is one of the
classification methods in data mining. In the study, SPSS Clementine
was used as a software of data mining. An application was done with
C5.0 and C&RT algorithms for evaluation of personal loan customers
and the results were compared.
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Research goal

The goal of the research is to develop the procedure to
test feature selection methods and propose the criterion to
compare feature selection methods through the diagnostic
multicollinearity features among selected features.
The problem is that the selected features set contain
multicollinearity features and the corresponding model is not
stable and simple.
The challenge is to propose a test feature selection method
procedure that:

ranks feature selection methods;
determines number of multicollinearity features among
selected features.
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Feature selection problem statement

There given a data set D = {X, y}, X = [χ1, . . . ,χn] is a
design matrix, j ∈ J , y ∈ Rm is a target vector.
Consider the linear model

y = f(w,X) + ε = Xw + ε,

where the parameters w ∈W, W is the parameter space and
ε is the error vector. The optimum feature subset selection
problem is

A∗ = argmin
A⊂J

S(A|w∗,DC),

where w∗ = argmin
w∈W

S(w|DL,A) and S = ‖y −Xw‖22.

Consider the following set of the feature selection methods:
M = {Lasso,LARS, Stepwise,ElasticNet,Ridge}.
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Definitions for multicollinearity and correlation

Definition
The optimum feature subset Ai is such Ai ⊆ J that mi : J → Ai ,
where mi ∈M.

Definition
A set of features χj , j ∈ B is called multicollinear if there exists δ > 0
and coefficients ak , k ∈ B such that:∥∥∥∥∥χj −

∑
k∈B

akχk

∥∥∥∥∥
2

2

< δ,

where j is a feature index and j /∈ B.

Definition
A pair of features with index i and j is called correlated if there exists
δ > 0 such that:

‖χi − χj‖22 < δij .
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The data sets to test feature selection methods

Inadequate correlated data sets

〈y,χj〉 = 0, j ∈ J ;∥∥∥∥∥χi −
∑
l∈B

αlχl

∥∥∥∥∥
2

2

< δ,

where i ∈ J , i /∈ B ⊂ J ;
J = Py ∩ Cf .

Adequate random data sets

J = R, |R| = r ;

‖y − χi‖22 < δ;

χ1, . . . ,χr ∼ U [0, 1]r .

Adequate correlated data sets

〈χi ,χj〉 = 0, i , j ∈ Pf ;

‖χi − χj‖22 < δij , i ∈ Pf , j ∈ Cf ;
y =

∑
j∈Pf

ajχj ;

J = Pf ∪ Cf .

Adequate redundant data sets∥∥χi − χj

∥∥2
2 < δij , i , j ∈ J ;

‖y − χj‖22 < δ, j ∈ J ;
J = Cy .
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Inadequate correlated data sets

The features with indices from the set Cf are correlated to
each other and the features with indices from the set Py are
orthogonal to the target vector y.

〈y,χj〉 = 0, j ∈ J ;∥∥∥∥∥χi −
∑
s∈B

αsχs

∥∥∥∥∥
2

2

< δ,

where i ∈ J , i /∈ B ⊂ J ;
J = Py ∩ Cf .
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Adequate random data sets

The features with indices from the set R are generated from
the standard uniform distribution and one of the features is
correlated with the target vector y.

J = R, |R| = r ;
χ1, . . . ,χr ∼ U [0, 1]r ;
‖y − χi‖22 < δ.
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Adequate redundant data sets

All features with the indices from the set Cy are correlated
with the target vector y.

∥∥χi − χj

∥∥2
2 < δij , i , j ∈ J ;

‖y − χj‖22 < δ, j ∈ J ;
J = Cy .
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Adequate correlated data sets
The set of the orthogonal features with indices from the set Pf , the
target vector y equals some linear combination of the orthogonal
features, the set of the features with indices from the set Cf
correlated with the orthogonal features.

〈χi ,χj〉 = 0, i , j ∈ Pf ;

‖χi − χj‖22 < δij ,

i ∈ Pf , j ∈ Cf ;
y =

∑
j∈Pf

ajχj ;

J = Pf ∪ Cf .
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Data set for generalised test procedure

A test data set structure is specified with following sets:
1) a set of orthogonal features χj , where indices j ∈ Pf ;
2) a set of features χj which are orthogonal to the target

vector y, where indices j ∈ Py ;
3) a set of multicollinear features χj , where indices j ∈ Cf ;
4) a set of features χj which are correlated to the target

vector y, indices j ∈ Cy ;
5) a set of random generated features χj , where

indices j ∈ R.
Let k be the multicollinearity parameter: if k equals 1,
features are correlated; if k equals 0, features are orthogonal.
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The criterion to compare feature selection methods
Let s0 be some given limit value of error function S(J |w,D).
Denote by h the maximum cardinality of the set Jh ⊆ A such
that the value of the error function is less or equal s0
S(Jh|wh,D) ≤ s0

h = argmax
S(Jh|wh,D)≤s0

|Jh|.

In the other words d is the maximum cardinality of the
redundant feature set:

d = |A| − h.

Criterion
The feature selection method mi is better than the feature
selection method mj if and only if the corresponding value
of di is smaller than the corresponding value of dj :

mi � mj ⇔ di < dj .
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Computational experiment
The goal:

show with the
1) inadequate correlated
2) adequate redundant
3) adequate correlated

data sets that there is no universal feature selection
method according to the proposed criterion;
show the dependence between the maximum number of
the redundant features d and the limit error function
value s0;
show the dependence between the VIF (Variance
Inflation Factor) and the multicollinearity parameter k .

Parameters of the experiment: number of objects m = 1000,
number of features n = 50, the limit error s0 = 0.5, k = 0.2 or
k = 0.8.
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Dependence VIF on the multicollinearity
parameter k for inadequate correlated data sets

None of the considered feature selection methods solves the
multicollinearity problem for this kind of data sets.

Definition
VIFj =

1
1−R2

j
, where R2

j is a
coefficient of determination,
where target vector is j -th
feature, j ∈ A,J = A \ {j}.
VIF = max

j∈A
VIFj
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Dependence VIF on the multicollinearity
parameter k for adequate redundant data sets

Lasso solves the multicollinearity problem for such kind of data
sets.
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Dependence VIF on k for adequate correlated data sets

Stepwise solves the multicollinearity problem.
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Dependence number of the redundant features d
on the limit error s0 for inadequate correlated data
sets

None of the considered feature selection methods gives enough
accurate solution to remove features and to stay error function less
or equal s0 = [0, 1].
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Dependence number of the redundant features d
on the limit error s0 for adequate redundant data
sets

Lasso gives the redundant feature set with the least
cardinality.
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Dependence number of the redundant features d
on the limit error s0 for adequate correlated data
sets

Stepwise gives the redundant feature set with the least
cardinality.
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Complexity and stability of the models applied to
inadequate correlated data sets

None of the considered feature selection methods gives the
stable and simple model.
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Complexity and stability of the models applied to
adequate redundant data sets

With increasing the multicollinearity parameter k Lasso gives
more stable and simple model than other methods.
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Complexity and stability of the models applied to
adequate correlated data sets

Stepwise gives the most stable and simple model applied to
adequate correlated data sets.
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The quality measures of the considered methods
Table: The redundant correlated data set, k = 0.8

d Cp RSS κ VIF
Lasso 0 5.16 · 108 8.5 · 10−4 1 0.24
Ridge 0 5.9 · 1011 0.97 6.07 · 1011 2.9 · 109

Elastic Net 3 5.16 · 108 8.5 · 10−4 7.3 · 1010 2.5 · 109

Stepwise 36 −997 1.73 · 10−12 6.07 · 1011 2.9 · 109

LARS 36 −997 1.65 · 10−12 6.07 · 1011 2.9 · 109

Table: The adequate correlated data set, k = 0.8

d Cp RSS κ VIF
Stepwise 1 9.4 · 105 8.8 · 10−25 1 0.63
Ridge 0 1.8 · 1030 0.95 1016 8.65 · 1016

LARS 1 1030 0.38 3 · 1029 1020

Lasso 15 1.73 · 1027 9.2 · 10−4 9.92 · 1015 1017

Elastic Net 15 1.7 · 1027 9.2 · 10−4 9.92 · 1015 1017
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Conclusion

Using various structured data sets we show that there is
no universal feature selection method even in the case of
linear model.
We propose the test sets which allow to select the most
appropriate feature selection method for any practical
application with known structure of data set.
We develop the test generation procedure to test feature
selection methods and select the optimum one by some
given criterion.
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