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Abstract. The paper is devoted to the problem of decoding multiscaled
time series and forecasting. The goal is to recover the dependence be-
tween an input signal and a target response. The proposed method allows
to receive the predicted values not for the next timestamp but for the
whole range of values in forecast horizon. The prediction is a multidi-
mensional target vector instead of one timestamp point. We consider the
linear model of partial least squares (PLS). The method finds the matrix
of a joint description for the design matrix and the outcome matrix. The
obtained latent space of the joint descriptions is low-dimensional. This
leads to a simple, stable predictive model. We conducted computational
experiments on the real dataset of energy consumption and electrocor-
ticograms signals (ECoG). The experiments show significant reduction
of the original spaces dimensionality, while the models achieve good pre-
diction quality.

Keywords: Time series decoding · Forecast · Partial least squares ·
Dimensionality reduction

1 Introduction

The paper investigates the problem of dependence recovering between an input
data and a model outcome. The proposed model is suitable for predicting a
multidimensional target variable. In the case of the forecasting problem, objects
and target spaces have the same nature. To build the model, we need to construct
autoregressive matrices for input objects and target variables. The object is a
local signal history, the outcome is signal values in the next timestamps. An
autoregressive model makes an assumption that the current signal values depend
linearly on the previous signal values.

In the case of time series decoding problem, objects and target spaces are
different in nature, the outcome is a system response to the input signal. The
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autoregressive design matrix contains the local history of the input signal. The
autoregressive target matrix contains the local history of the response.

The object space in time series decoding problems is high dimensional. Ex-
cessive dimensionality of the feature description leads to instability of the model.
To solve this problem the feature selection procedures are used [13,14].

The paper considers the partial least squares regression (PLS) model [2, 10,
22]. The PLS model reduces the dimensionality of the input data and extracts
the linear combination of features which have the greatest impact on the re-
sponse vector. Feature extraction is an iterative process in order of decreasing
the influence on the response vector. PLS regression methods are described in
detail in [5,9,12]. The difference between various PLS approaches, different kinds
of the PLS regression could be found in [21].

The current state of the field and the overview of nonlinear PLS method
modifications are described in [20]. A nonlinear PLS method extension was in-
troduced in [23]. There has been developed the variety of PLS modifications.
The proposed nonlinear PLS methods are based on smoothing splines [7], neural
networks [19], radial basis functions [24], genetic algorithms [11].

The result of the feature selection is the dimensionality reduction and the
increasing model stability without significant loss of the prediction quality. The
proposed method is used on two datasets with the redundant input and target
spaces. The first dataset consists of hourly time series of energy consumption.
Time series were collected in Poland from 1999 to 2004.

The second dataset comes from the NeuroTycho project [1] that designs
brain-computer interface (BCI) [15, 17] for information transmitting between
brains and electronic devices. Brain-Computer Interface (BCI) system enhances
its user’s mental and physical abilities, providing a direct communication mean
between the brain and a computer [16]. BCI’s aim at restoring damaged function-
ality of motorically or cognitively impaired patients. The goal of motor imagery
analysis is to recognize intended movements from the recorded brain activity.
While there are various techniques for measuring cortical data for BCI [3, 18],
we concentrate on the ElectroCorticoGraphic (ECoG) signals [6]. ECoG, as well
as other invasive techniques, provides more stable recordings and better reso-
lution in temporal and spatial domains than its non-invasive counterparts. We
address the problem of continuous hand trajectory reconstruction. The subdural
ECoG signals are measured across 32 channels as the subject is moving its hand.
Once the ECoG signals are transformed into informative features, the problem
of trajectory reconstruction is the autoregression problem. Feature extraction in-
volves application of some spectrotemporal transform to the ECoG signals from
each channel [8].

In papers, which are devoted to forecasting of complex spatial time series,
the forecast is built point-wise [4, 25]. If one need to predict multiple points
simultaneously, it is proposed to compute forecasted points sequentially. During
this process the previous predicted values are used to obtain a subsequent ones.
The proposed method allows to obtain multiple predicted time series values at
the same time taking into account hidden dependencies not only in the object
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space, but also in the target space. The proposed method significantly reduces
the dimensionality of the feature space.

The main contributions of this paper are as follows:

– addressing the dimensionality reduction problem for high-dimensional time
series data,

– significant reducing the problem dimensionality by introduction of the latent
space,

– conducting the computational experiments for real datasets with analysis of
the results.

The rest of the paper is organized as follows. Section 2 states the problem
of time series forecasting as optimization problem. Section 3 describes the PLS
regression model in details. Section 4 is devoted to the computational experi-
ments.

2 Problem statement

Given a dataset D = (X,Y), where X ∈ Rm×n is a design matrix, Y ∈ Rm×r is
a target matrix. The examples of how to construct the dataset for a particular
application task described in Section 4.

We assume that there is a linear dependence between the objects x ∈ Rn

and the responses y ∈ Rr

y
1×r

= x
1×n
· Θ
n×r

+ ε
1×r

, (1)

where Θ is the matrix of model parameters, ε is the vector of residuals.
The task is to find the matrix of the model parametersΘ given the datasetD.

The optimal parameters are determined by error function minimization. Define
the quadratic error function S for the dataset D:

S(Θ|D) =

∥∥∥∥ X
m×n

· Θ
n×r
− Y

m×r

∥∥∥∥2
2

=

m∑
i=1

∥∥∥∥ xi
1×n
· Θ
n×r
− yi

1×r

∥∥∥∥2
2

→ min
Θ

. (2)

The linear dependence of the columns of the matrix X leads to an instable
solution for the optimization problem (2). To avoid the strong linear dependence
one could use feature selection techniques.

3 Partial Least Squares method

To eliminate the linear dependence and reduce the dimensionality of the input
space, the principal components analysis (PCA) is widely used. The main dis-
advantage of the PCA method is its insensitivity to the interrelation between
the objects and the responses. The partial least squares algorithm projects the
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design matrix X and the target matrix to the latent space Rl with low dimen-
sionality (l < r < n). The PLS algorithm finds the latent space matrix T ∈ Rm×l

that best describes the original matrices X and Y.
The design matrix X and the target matrix Y are projected into the latent

space in the following way:

X
m×n

= T
m×l
· PT

l×n
+ F

m×n
=

l∑
k=1

tk
m×1
· p

T

k
1×n

+ F
m×n

, (3)

Y
m×r

= T
m×l
·QT

l×r
+ E

m×r
=

l∑
k=1

tk
m×1
· qT

k
1×r

+ E
m×r

, (4)

where T is a matrix of a joint description of the objects and the outcomes in
the latent space, and the columns of the matrix T are orthogonal; P, Q are
transition matrices from the latent space to the original space; E, F are residual
matrices.

The pseudo-code of the PLS regression algorithm is given in Algorithm 1. In
each of the l steps the algorithm iteratively calculates columns tk, pk, qk of the
matrices T, P, Q, respectively. After the computation of the next set of vectors,
the one-rank approximations are subtracted from the matrices X, Y. This step
is called a matrix deflation. In the first step one has to normalize the columns of
the original matrices (subtract the mean and divide by the standard deviation).
During the test mode we need to normalize the test data, compute the model
prediction (1), and then perform the reverse normalization.

Algorithm 1 PLSR algorithm
Require: X,Y, l;
Ensure: T,P,Q;
1: normalize matrices X и Y by columns
2: initialize u0 (the first column of Y)
3: X1 = X;Y1 = Y
4: for k = 1, . . . , l do
5: repeat

6: wk := X
T
kuk−1/(u

T
k−1uk−1); wk := wk

‖wk‖

7: tk := Xkwk

8: ck := Y
T
k tk/(t

T
k tk); ck := ck

‖ck‖

9: uk := Ykck
10: until tk stabilizes
11: pk := X

T
k tk/(t

T
k tk), qk := Y

T
k tk/(t

T
k tk)

12: Xk+1 := Xk − tkp
T
k

13: Yk+1 := Yk − tkq
T
k
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The vectors tk and uk from the inner loop of Algorithm 1 contain information
about the object matrix X and the outcome matrix Y, respectively. The blocks of
steps (6)–(7) and (8)-(9) are analogues of the PCA algorithm for the matrices X
and Y [10]. Sequential repetition of the blocks takes into account the interaction
between the matrices X and Y.

The theoretical explanation of the PLS algorithm follows from the following
statements.

Proposition 1. The best description of the matrices X and Y taking into ac-
count their interrelation is achieved by maximization the covariance between the
vectors tk and uk.

Proof. The statement follows from the equation

cov(tk,uk) = corr(tk,uk) ·
√

var(tk) ·
√

var(uk).

Maximization of variances of the vectors tk and uk corresponds to keeping in-
formation about original matrices, the correlation of these vectors corresponds
to interrelation between X and Y. ut

In the inner loop of Algorithm 1 the normalized weight vectors wk and ck
are calculated. These vectors construct the matrices W and C, respectively.

Proposition 2. The vector wk and ck are eigenvectors of the matrices X
T

kYkY
T

kXk

and Y
T

kXkX
T

kYk, corresponding to the maximum eigenvalues.

wk ∝ X
T

kuk−1 ∝ X
T

kYkck−1 ∝ X
T

kYkY
T

k tk−1 ∝ X
T

kYkY
T

kXkwk−1,

ck ∝ Y
T

k tk ∝ Y
T

kXkwk ∝ Y
T

kXkX
T

kuk−1 ∝ Y
T

kXkX
T

kYkck−1,

where the ∝ symbol means equality up to a multiplicative constant.

Proof. The statement follows from the fact that the update rule for vectors wk,
ck coincides with the iteration of the power method for the maximum eigenvalue.

Let a matrix A be diagonalizable, x be some vector, then

lim
k→∞

Akx = λmax(A) · vmax,

where λmax(A) is the maximum eigenvalue of the matrix A, vmax is the eigen-
vector of the matrix A, corresponding to λmax(A). ut

Proposition 3. The update rule for the vectors in steps (6)–(9) of Algorithm 1
corresponds to the maximization of the covariance between the vectors tk and
uk.
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Proof. The maximum covariance between the vectors tk and uk is equal to the
maximum eigenvalue of the matrix X

T

kYkY
T

kXk:

max
tk,uk

cov(tk,uk)
2 = max

‖wk‖=1
‖ck‖=1

cov (Xkwk,Ykck)
2
= max
‖wk‖=1
‖ck‖=1

cov
(
c

T

kY
T

kXkwk

)2
=

= max
‖wk‖=1

cov
∥∥∥YT

kXkwk

∥∥∥2 = max
‖wk‖=1

w
T

kX
T

kYkY
T

kXkwk =

= λmax

(
X

T

kYkY
T

kXk

)
,

where λmax(A) is the maximum eigenvalue of the matrix A. Using Statement 2,
we obtain the required result. ut

After the inner loop, the step (11) is to compute vectors pk, qk by projection
of the columns of the matrices Xk and Yk to the vector tk. To go to the next
step one has to deflate the matrices Xk and Yk by the one-rank approximations
tkp

T

k and tkq
T

k

Xk+1 = Xk − tkp
T

k = X−
∑
k

tkp
T

k ,

Yk+1 = Yk − tkq
T

k = Y −
∑
k

tkq
T

k .

Each next vector tk+1 turns out to be orthogonal to all vectors ti, i = 1, . . . , k.
Let us assume that the dimension of object, response and latent variable

spaces are equal to 2 (n = r = l = 2). Fig. 1 shows the result of the PLS algorithm
in this case. Blue and green dots represent the rows of the matrices X and
Y, respectively. The dots were generated from a normal distribution with zero
expectation. Contours of the distribution covariance matrices are shown in red.
Black contours are unit circles. Red arrows correspond to principal components
for the set of points. Black arrows correspond to the vectors of the matrices W
and C from the PLS algorithm. The vectors tk and uk are equal to the projected
matrices Xk and Yk to the vectors wk and ck, respectively, and are denoted by
black pluses. Taking into account the interaction between the matrices X and
Y the vectors wk and ck deviates from the principal components directions.
The deviation of the vectors wk is insignificant. In the first iteration, c1 is close
to the principal component pc1, but the vectors ck in the next iterations could
strongly correlate. The difference in the behaviour of the vectors wk and ck
is associated with the deflation process. In particular, we subtract from Y the
one-rank approximation found in the space of the matrix X.

To obtain the model predictions and find the model parameters, let us mul-
tiply the both hand sides of the equation (3) by the matrix W. Since the rows of
the residual matrix E are orthogonal to the columns of the matrix W, we have

XW = TP
T
W.
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Fig. 1: The result of the PLS algorithm for the case n = r = l = 2.

The linear transformation between objects in the input and latent spaces has
the form

T = XW∗, (5)

where W∗ = W(P
T
W)−1.

The matrix of the model parameters 1 could be found from equations (4), (5)

Y = TQ
T
+ E = XW∗Q

T
+ E = XΘ + E.

Thus, the model parameters (1) are equal to

Θ = W(P
T
W)−1Q

T
. (6)

To find the model predictions during the testing, we have to

– normalize the test data;
– compute the prediction of the model using the linear transformation with

the matrix Θ from (6);
– perform the inverse normalization.

4 Computational experiment

All computational experiments were conducted using a personal laptop with 2.3
GHz. We use Matlab and Python as a main programming languages for the
analysis.

Time series of energy consumption contain hourly records (total of 52512
observations). A row of the matrix X is the local history of the signal for one week
n = 24×7. A row of the matrix Y is the local forecast of energy consumption for
the next 24 hours r = 24. In this case, the matrices X and Y are autoregressive
matrices.
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In the case of the ECoG data, the matrix X consists of the spatial-temporal
representation of voltage time series, and the matrix Y contains information
about the position of the hand. The generation process of the matrix X from
the voltage values described in [8]. Feature description in each time moment has
dimension equal to 864. The hand position is described by the coordinates along
three axes. An example of voltage data samples with the different channels and
corresponding spatial coordinates of the hand are shown in Fig. 2. To predict the
position of the hand in the next moments we used an autoregressive approach.
One object consists of a feature description in a few moments. The answer is
the hand position in the next moments of time. The task is to predict the hand
position in the next few moments of time.

0 50 100 150 200 250 300
Time, ms

ch 4

ch 3

ch 2

ch 1

100
150

200
250

300

220 260 300 340 380

50

100

150

200

Fig. 2: The ECoG data example. On the left the voltage data taken from multiple
channels is shown, on the right there are coordinates of the hand along three
axes.

We introduce the mean-squared error for matrices A = [aij ] and B = [bij ]

MSE(A,B) =
∑
i,j

(aij − bij)2.

To estimate the prediction quality, we compute the normalized MSE

NMSE(Y, Ŷ) =
MSE(Y, Ŷ)

MSE(Y, Ȳ)
, (7)

where Ŷ is the model outcome, Ȳ is the average constant forecast over the
columns of the matrix.

4.1 Energy consumption dataset

To find the optimal dimensionality l of the latent space, the energy consumption
dataset was divided into training and validation parts. The training data con-
sists of 700 objects, the validation data is of 370 ones. The dependence of the
normalized mean-squared error (7) on the latent space with dimensionality l is
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Fig. 3: NMSE as a function of dimension l of latent space for energy consumption
data.

shown in Fig. 3. First, the error drops sharply with increasing the latent space
dimensionality and then changes slightly.

The error achieves the minimum value for l = 14. Let us build a forecast of
energy consumption for a given l. The result is shown in Fig. 4. The PLS algo-
rithm restored the autoregressive dependence and found the daily seasonality.
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Fig. 4: The energy consumption forecast by the PLS algorithm (the latent space
dimensionality is equal to l = 14).
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4.2 ECoG dataset

Fig. 5 illustrates the dependence of the normalized mean-squared error (7) on
the latent space dimensionality l for ECoG dataset. The approximation error
changes slightly for l > 5. The joint spatial-temporal representation of objects
and the position of the hand can be represented as a vector of dimensionality
equal to l � n. Let us fix l = 5. An example of the approximation of the hand
position is shown in Fig. 6. Solid lines represent the true coordinates of the hand
along all axes, the dotted lines show the approximation by the PLS algorithm.
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Fig. 5: NMSE as a function of dimension l of latent space for the ECoG data.

5 Conclusion

In the paper we proposed the approach for solving the problem of time series
decoding and forecasting. The algorithm of partial least squares allows to build
a simple, stable and linear model. The obtained latent space gathers information
about the objects and the responses and dramatically reduces the dimensionality
of the input matrices. The computational experiment demonstrated the applica-
bility of the proposed method to the tasks of electricity consumption forecasting
and brain-computer interface designing. The future research will be aimed to the
extension of the proposed method for the class of non-linear dependencies.
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