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Abstract

This paper presents deterministic and stochastic algorithms of the structure
parameters estimation for the model selection problem. Structure parameters
optimization for linear and non-linear models is investigated. The optimized
error function is inferred from statistical hypothesis on the model parameter
distributions. Analytic algorithms are based on the error function derivatives
estimation with respect to the model parameters. Stochastic algorithms are
based on the model parameters sampling and on the data cross-validation. The
algorithms are tested and compared on model and real data.
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1. Introduction

The model complexity estimation is an important problem of model selec-
tion. The problem is to find a regression function [1, 2, 3, 4] modeling measured
data and to estimate regression model parameters [5]. The measured data are
dependent and independent variable measurements.

To estimate model parameters one must optimize the error function over the
set of parameters [6, 7]. The error function is inferred from some algebraic or
statistic approaches. This paper considers the statistical approach of the data
generation.

According to this approach, the dependent variable and the model param-
eters are considered to be random values and identified by their probability
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distribution functions. In this case, an error function is a form of the likeli-
hood [8, 9] which should be optimized.

To optimize the error function we use the Bayesian model comparison method [10,
1, 11]. According to this method, the error function contains so-called structure
parameters which indicate model complexity. The error function should be op-
timized over both set of parameters and set of structure parameters to find the
optimal model.

The structure parameters are regularization parameters and penalize ele-
ments of model parameters vector [12, 13, 14]. The main goal of this paper is
to estimate the structure parameters [15, 16, 17]. To do this we maximize the
model evidence [18, 19].

One of the methods of model evidence maximization is the Laplace approx-
imation [20, 21]. The dependent variable and parameters vector are considered
to be multivariate normal vectors. Covariation matrices of this vectors are the
structure parameters. We propose various estimations of the structure param-
eters depending on types of the covariance matrices.

An alternative method considered in this paper is the Monte Carlo approx-
imation of the model evidence [22, 23]. The parameters vector is sampled ac-
cording to the given distribution. We maximize the sum over the set of sampled
parameters approximating the model evidence.

To validate the proposed methods we use the cross-validation method of
the structure parameters estimation [7, 24]. This method is based on the sam-
ple splitting into roughly equal-size parts. The model parameters should be
estimated on the each part of the sample.

As a special case we consider linear regression models [5]. For this type of
models we derive explicit values of parameters vector and Hessian matrix [25].

2. Structural parameters estimation problem

The measured data consist of measured data of a dependent variable y and
an independent variable x. Let this dependence be statistical such that

E(y|x) = f(ŵ,x).

Denote by D =
{
(xi, yi)

}
m
i=1 a regression sample set that consists of pairs of

the independent vectors xi = [xij ]
n
j=1, x ∈ X ⊆ Rn and corresponding values

of the dependent variable yi, y ∈ Y ⊆ R1.
Let index i of a sample and index j of an independent variable be elements of

finite unordered sets i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. By D = (X,y) denote a
set such that y = [y1, . . . , ym]T is a vector of dependent variable measurements
and X = [xT

1, . . . ,x
T
m]

T
is a design m× n matrix.

Suppose the elements of sample are related by

yi = f(w,xi) + ε(xi)

with additive random noise ε = ε(x).
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Let f : W × X → Y be the regression model mapping Cartesian product
of model parameters space W and independent variables space X to dependent
variables space Y . In other words, the regression model is a map f : (w,x) 7→ y,
where w ∈ W is the parameters vector, x ∈ X is the independent variable, and
y ∈ Y is the dependent variable. By

f = f(w,X)

denote the vector function

f(w,X) = [f(w,x1), ..., f(w,xm)]T.

2.1. Model evidence

We use the coherent Bayesian inference method to estimate the parametersw
and the structure parameters A,B of the model f .

The first level of Bayesian inference estimates w by maximizing posterior
distribution

p(w|D,A,B) =
p(D|w,B)p(w|A)

p(D|A,B)
.

Elements of this equation and the corresponding parameters are as follows.

p(w|D,A,B) — parameters posterior distribution,

wMP = arg max
w∈Rn

p(w|D,A,B) — most probable parameters,

p(D|w,B) — marginal likelihood function,

p(w|A) — prior distribution of parameters,

p(D|A,B) — model evidence.

Matrices A and B are called the structure parameters. In particular, matrices A
and B are the parameters of the prior distribution p(w) and the conditional
distribution p(D|w), respectively. Below we will consider special types of this
distributions. Let us remark that a model type can also be a structure parameter
but in this paper we will fix a model type.

The second level of the bayesian inference selects the best model from the
set of competitive models F by maximizing a posterior probability

p(A,B|D)

over structure parameters A and B. To do this, we will take into account the
Bayes’ theorem:

p(A,B|D) ∝ p(D|A,B)p(A,B),

where p(D|A,B) is called the model evidence, and p(A,B) — the prior distribu-
tion over the set of models. In this paper we will consider uniform distribution
over the set of models, i. e.

p(A,B|D) ∝ p(D|A,B).

3



Table 1: Data generation hypothesis: dependent variable y and model parameters w.

Dependent variable y Model parameters w Notations

1) y∼ N (f , σ2(y)I)
def
=N (f , β−1I) w∼ N (w0, σ

2(w)I)
def
=N (0, α−1I) A = αI

2) y∼ N (f , diag−1(β1, . . . , βm)I) w∼ N (w0, diag
−1(α1, . . . , αn)I) A = diag(αi)I

3) y∼ N (f ,B−1) w∼ N (w0,A
−1) A∈ Mn

Therefore we must maximize the model evidence to estimate the structure pa-
rameters A,B

p (D|A,B) =

∫
w∈W

p(D|w,B)p(w|A)dw → max
A∈Mn,B∈Mm

, (1)

where Mn is the set of positive semi-definite n× n matrices.

2.2. Data generation hypothesis

Let vectors y and w have the multivariate normal distribution with covari-
ance matrices A−1 and B−1, respectively. To estimate parameters A,B,w let
us make some assumptions about distributions p(D|w,B) and p(w|A). Table 1
shows various cases of the data generation hypothesis for the dependent vari-
able y and the model parameters w. We consider matrices A and B of a scalar,
diagonal, and full type, independently.

The methods considered in this paper allow to estimate structure parameters
only for the scalar-type B = βI. Different types of the A matrix are considered.

3. Laplace approximation method

In this section we use the Laplace approximation of the model evidence to
estimate structure parameters A,B and model parameters w.

To estimate structure parameters Â, B̂ transform the optimization prob-
lem (1) according to the data generation hypothesis:

|B| 12
(2π

m
2 )

|A| 12
(2π

n
2 )

∫
w∈W

exp

(
−1

2
(y − f)TB(y − f)

)
exp

(
−1

2
wTAw

)
dw → max

A∈Mn,B∈Mm
.

(2)
By the error function S(w,A,B) denote the exponent of the expression (2) with
a negative sign:

S(w,A,B) =
1

2
(y − f)TB(y − f) +

1

2
wTAw (3)

and the optimization problem (2) will be as follows:

|B| 12
(2π

m
2 )

|A| 12
(2π

n
2 )

∫
w∈W

exp
(
−S (w,A,B)

)
dw → max

A,B
.
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Suppose that parameters ŵ maximize the posterior distribution of parameters,
or minimize the error function; then this parameters are optimal:

ŵ = arg min
w∈W

S(w|Â, B̂),

where Â, B̂ are estimations of the structure parameters maximizing (2).
The Laplace approximation method uses the error function S(w) expansion

near the optimal solution S(ŵ) to approximate the expression

S(w) = S(ŵ) +
1

2
∆wTH∆w + o(||w||2),

where H is Hessian of the error function

H = ∇∇S(w)|w=ŵ

at w = ŵ. Denote by ∥w∥ the Euclidean norm ∥w∥ = ∥w∥2. Instead of
optimizing (2) let us optimize the approximated function

|B| 12
(2π

m
2 )

|A| 12
(2π

n
2 )

exp
(
S(ŵ)

) ∫
w∈W

exp

(
−1

2
∆wTH∆w

)
dw → max

A,B
. (4)

Let us remark that the integrand of (4) is a part of the normal distribution,
hence we can substitute an integral in (4) for normalization and obtain:

g(A,B) =
|B| 12
(2π

m
2 )

|A| 12
(2π

n
2 )

exp
(
S(ŵ)

) (2π n
2 )

|H| 12
→ max

A,B
. (5)

Taking the logarithm of (5), we obtain the optimization problem:

− ln g(A,B) = −m

2
ln(2π)+

1

2
ln |A|+ 1

2
ln |B|−S(w0)−

1

2
ln |H| → max

A,B
. (6)

Let us to define a type of the matricesA,B to simplify the function ln g(A,B).
In particular, below we will consider the scalar-type B matrix, B = βI. In this
case, the error function (3) is given by

S(w,A, β) =
β

2
(y − f)T(y − f) +

1

2
wTAw = βSD(w) +

1

2
wTAw, (7)

where

SD(w) =
1

2
(y − f)T(y − f), (8)

and Hessian is given by
H = βHD +A,

where HD is a Hessian of the function SD(w) at w = ŵ.
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The function (6) is given by

− ln g(A, β) = −m

2
ln(2π) +

1

2
ln |A|+ m

2
lnβ − β

2

(
y − f (ŵ,X)

)T(
y − f (ŵ,X)

)
−

−1

2
ŵTAŵ − 1

2
ln |βHD +A| → max

A,B
.

(9)

Below we will consider scalar and diagonal types of matrix A to differentiate a
summand

1

2
ln |βHD +A| (10)

of the function (9).

3.1. Scalar type of matrix A

In this section, let A be scalar, A = αI. By this assumption, the expres-
sion (10) equals

1

2
ln |βHD + αI| = 1

2

n∑
j=1

ln(βhj + α),

where hj is an eigenvector of HD.
Equating derivatives of (9) with respect to α and β tending to zero, we will

estimate structure parameters α and β:

∂(− ln g(α, β))

∂α
=

n

2α
− ∥ŵ∥2

2
− 1

2

n∑
j=1

1

βhj + α
= 0,

α∥ŵ∥2 = n−
n∑

j=1

α

βhj + α
= β

n∑
j=1

hj

βhj + α
.

By definition, put

γ = β
n∑

j=1

hj

βhj + α
, (11)

then
α =

γ

∥ŵ∥2
. (12)

Similarly, equating a derivative of (9) with respect to β to zero, we obtain

β =
m− γ

∥y − f(ŵ,X)∥2
. (13)

Since γ is a function of β, α and optimal model parameters ŵ we solve equa-
tions (11), (12) and (13) iteratively for the fixed ŵ.
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3.2. Diagonal type of matrix A

In the case of diagonal matrix A = diag(αj) the obtained results are com-
parable with equations (11), (12) and (13). In particular, instead of (11), by
definition put

ρ = β
n∑

j=1

hj

βhj + αj
,

and β is given by

β =
m− ρ

∥y − f(ŵ,X)∥2
.

To compute elements of the matrix A = diag(αj) we must solve n independent
equations

αj =
βhj

2

(
−1 +

√
1 +

4

βhj∥ŵ∥2

)
.

3.3. Linear model case

In the case of linear model

f(w,X) = Xw

we can obtain the explicit form of some optimization problems solutions. For
example, the integral of the error function exponent function equals∫

exp
(
−S(w)

)
dw = S(ŵ)(2π)

n
2 (detH−1)

1
2 ,

where ŵ is a unique global minimum of the unimodal error function S(w).
Whereas Hessian

H = A+ βXTX.

In this case, the most probable parameters

ŵ = argmax p(w|D,A,B)

equal
ŵ = (A+ βXTX)−1βXTy.

In particular, for the case of diagonal matrix A = diag(αj) we can write explicit
estimations of the structure parameters:

β =
m− ρ

∥y −Xŵ∥2
,

where

ρ =

n∑
j=1

βhj

αj + βhj
,

and

αj =
βhj

2

(
−1 +

√
1 +

4

βhj∥ŵ∥2
)
,

where hj is a j−th eigenvalue of the matrix XTX.
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4. Hessian computation

In the non-linear case we must apply a numerical method to determine Hes-
sian values. To do this we use a method of approximation of the error function
second derivatives with finite differences. The element hjk of the Hessian H
at w = ŵ can be computed as

hjk =
∂2S

∂wj∂wk
=

S(ŵ + (ej + ek)r)− S(ŵ + ejr)− S(ŵ + ekr) + S(ŵ)

r2
,

where ej , ek are unit vectors, r is a small parameter. An error of this method
is of the order O(r). The method requires computation of the error function in

the n(n+1)
2 points and is computationally efficient.

5. Monte Carlo approximation method

From the bayesian inference it follows that to estimate structure parameters
we must maximize integral∫

w∈W

p(D|w,B)p(w|A)dw → max
A∈Mn,B∈Mm

. (14)

In this section let A be the matrix inverse to the covariance matrix Σ of the
random vector w, A = Σ−1. Without loss of generality it can be assumed
that E(w) = 0. This generalizes the hypothesis of the normal distribution of
the parameters vector w, given in the previous section.

Let us remark that under this conditions A−1 is a Gramian matrix of Eu-
clidean space of random vectors w. Since matrix A is a positive definite matrix
it follows that matrix A has a unique Cholesky decomposition [16]

A−1 = RTR; (15)

here R is an upper triangular matrix with positive diagonal elements. Note
that R is a transformation matrix from Euclidean space of random vectors w
with the Gramian matrix Σ0 = I to Euclidean space of vectors w with the
Gramian matrix Σ.

Since the Cholesky decomposition [16] is unique for the matrix A, let us find
the optimal solution of (14) as∫

w∈W

p(D|w,B)p(w|R)dw → max
R,B

.

In this section let matrix B be constant, B = B0. The the optimization prob-
lem (14) will be as follows:∫

w∈W

p(D|w,B0)p(w|R)dw → max
R

. (16)
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Since the integral (16) cannot be computed analytically, we will use a stochastic
method of integration over the parameters space W . Note that the expres-
sion (16) equals the expected value of the likelihood∫

w∈W

p(D|w,B0)p(w|R)dw = E
(
p(D|w,B0)

)
,

and according to the law of large numbers∫
w∈W

p(D|w,B0)p(w|R)dw ≈ 1

K

∑
w∈W(R)

p(D|w,B0),

where W(R) is a set of vectors w with the covariance matrix RTR. The
set W(R) of cardinality K can be computed through samplng.

Denote by E(R) a model evidence approximation that should be maximized
over R:

E(R) ≈ 1

K

∑
w∈W(R)

p(D|w,B0) → max
R

. (17)

To estimate the optimal parametersR of the optimization problem (17) it is nec-
essary to carry out the sampling procedure of the parameters W(R) for each R.
However, it is readily seen that the matrix R is the transformation matrix for
the map from Euclidean space with the Gramian matrix I to Euclidean space
with the Gramian matrix RTR.

This means that it is sufficient to carry out sampling procedure once before
optimization algorithm starts. Doing this we obtain the set

W0 = W(I) = {w0|w0 ∼ p(w0|I)}.

Then we will compute the set W(R) on each iteration of the algorithm by
rescaling the set W0:

W(R) = {RTw0|w0 ∈ W0}.

5.1. Metropolis-Hastings sampling algorithm

To generate the sample W0 = {w|w ∼ p(w|I)} the Metropolis-Hastings
algorithm is used.

The basic idea of the algorithm is to generate a sample such that the sample
forms a Markov chain. Each element wt+1 of the sample correlates only with
the previous element wt of the sample.

Denote by Q(w|w′) an auxiliary distribution Q(w|w′), choose an initial
elementw0 and assign W0 = {w0}. Then let an elementwt be chosen according
to the distribution Q(w′|wt). The next elementw′ is generated randomly. Then
the algorithm computes the acceptance ratio a:

a = min
w′∈Rn

(
p(D|w′,B0)Q(wt|w′)

p(D|wt,B0)Q(w′|wt)
, 1

)
.
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Algorithm accepts the candidate w′ with the probability a, wt+1 = w′, W0 :=
W0 ∪w′. Otherwise, algorithm rejects the candidate and puts wt+1 = wt.

wt+1 =

{
w′, with the probability a,

wt, with the probability 1− a.

Let the auxiliary distribution Q(w|w′) be normal:

Q(w|w′) = Q(w′|w) =
1

(2πα−1)
n
2
exp

(
−α

2
(w −w′)T (w −w′)

)
.

That is, the function Q(w|w′) is symmetric and

a =
p(D|w′,B0)

p(D|wt,B0)
.

The initial element w0 is chosen randomly from the distribution P (w|I).

6. Cross-validation estimation method

Cross-validation method assumes realizations of the random vector w to be
defined by the regression sample elements. Each realization is the optimal value
of the parameters vector w on the corresponding subsample. We will estimate
the expected loss

L(w) = ED

(
SD(w)

)
,

where

SD(w) =
1

2
(y − f)T(y − f)

according to the (8). Note that the function SD(w) is the part of the first
summand of the error function S(w) in (7):

S(w) = βSD(w) +
1

2
wTAw,

where the second summand 1
2w

TAw is corresponded with the prior distribution
of the model parameters w.

According to [7] we split the sample D into Q roughly equal-sized parts to
estimate the expected loss L(w),

D = Dl1
1 ⊔ ... ⊔D

lQ
Q .

By ŵD\Dq
(A) denote an estimation of the parameters vector w such that ŵ

minimizes the error function (7) over the subsample D\Dq for the constant
matrix A. We minimize the expected loss estimation (CV — Cross-Validation)

CV(D,A) =
1

m

m∑
i=1

SDq (ŵD\Dq
(A)) → min

A∈Mn
,

where SDq (ŵD\Dq
(A)) estimated on the validation subsample Dq with the pa-

rameters vector ŵ such that ŵ is estimated on the learn subsample D\Dq. Note
that the matrix B is fixed, B = B0, and the algorithm computes the estimation
only of the matrix A.
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Figure 1: Structural parameters convergence for the scalar matrix A−1, A = αI.

7. Computational experiment

Table 2: Error analysis: estimations relative bias.

Scalar Diag Full
∥ŵ−w∗∥
∥w∗∥

∥Â−A∗∥
∥A∗∥

∥ŵ−w∗∥
∥w∗∥

∥Â−A∗∥
∥A∗∥

∥ŵ−w∗∥
∥w∗∥

∥Â−A∗∥
∥A∗∥

OLS 0.3 - 0.67 - 0.37 -
LA 0.095 0.14 0.54 1.09 - -
MK 0.078 0.16 0.52 0.36 0.34 0.57
CV 0.041 0.39 0.53 0.42 0.36 0.55

The proposed algorithms were tested on synthetic and real data. Figures
below illustrate convergence of the structure parameters estimations ŵ, Â. The
results are compared with the true values w∗,A∗.

Consider the sample set generated by the linear polynomial model

y =

n∑
j=0

wjx
j + ε,

where
w ∼ N (0,A∗), ε ∼ N (0,B∗) = N (0, β∗I);

here matrices A∗ and B∗ are given.
The proposed algorithms estimated the matrix Â and the corresponding

optimal parameters vector ŵ. The Laplace approximation also estimated the
matrix B̂.

Table 2 shows the results; here ∥ŵ−w∗∥
∥w∗∥ is a norm of the estimation relative

bias from parameters true value. Similarly, ∥Â−A∗∥
∥A∗∥ is a norm of the estimation

relative bias from structure parameters A∗ true value. The first row of the table
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Figure 2: Structural parameters convergence for the diagonal matrix A−1, A = αI.
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Figure 3: Structural parameters convergence for the full matrix A−1, A = αI.
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shows the results for ordinal least squares method of the parameters estimation.
The best fitted parameters are marked bold. Table shows that algorithms return
comparable results.

Figures 1, 2, 3 illustrate iterative parameters convergence for the real data.
The real data are bread prices data with time as the independent variable and
price as the dependent variable. Additional columns of the matrix X are poly-
noms of the time variable. Figure 1 illustrates convergence for scalar type of
the matrix A. Figure 2 illustrates diagonal type and figure 3 illustrates full
type of the matrix A. X-axis shows iterations number, y-axis shows value of
the elements of the matrix A.

Figure 1 shows that in the scalar case convergence appears after 10-20 it-
erations. Algorithms need more iterations for the diagonal (fig. 2) and for the

full (fig. 3) cases. Figure 2 shows zero diagonal elements of the matrix Â−1.
The zero element follows that the corresponding feature is non-informative due
to the large penalty in the error function. All three algorithms show that two
features (fourth and fifth polynomial degrees) are non-informative.

Figure 4 shows computational time of the algorithms. X-axis shows maxi-
mum polynomial degree which grows from 2 to 11. Size of the generated sample
equals 400. The cardinality of the set |W(R)| equals 1000, blocks number Q for
cross-validation equals 100.

Figure 4 shows that computational times of the algorithms are comparable
in the case of the scalar matrix A∗ = αI since there is only one parameter α
for optimization. Figure 4 shows that the Laplace approximation method works
much more faster because it solves n independent equations. Note that compu-
tational time function is not monotonic for the Monte Carlo and cross-validation
algorithms due to randomization of the initial values.

8. Conclusion

In this paper we presented the algorithms of the regression model struc-
ture parameters estimation. We proposed the Laplace approximation of the
error function for the model evidence estimation to estimate diagonal covari-
ance matrix. Also we proposed the Monte Carlo method for model evidence
approximation and cross-validation method for the model parameters estima-
tion to estimate full covariance matrix. The paper illustrates features of this
methods: convergence and computational time. Model and real data were used
to illustrate the results. The error analysis and proposed methods comparison
are shown.
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