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Abstract: The paper investigates a mixture of expert models. The mixture
of experts is a combination of experts, local approximation model, and a gate
function, which weighs these experts and forms their ensemble. In this work,
each expert is a linear model. The gate function is a neural network with soft-
max on the last layer. The paper analyzes various prior distributions for each
expert. The authors propose a method that takes into account the relationship
between prior distributions of different experts. The EM algorithm optimises
both parameters of the local models and parameters of the gate function. As
an application problem, the paper solves a problem of shape recognition on
images. Each expert fits one circle in an image and recovers its parameters:
the coordinates of the center and the radius. The computational experiment
uses synthetic and real data to test the proposed method. The real data is a
human eye image from the iris detection problem.
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1 Introduction

The paper studies the problem of mixture of experts construction. The mixture of experts
is a multimodel. The mixture of experts uses a gate function to weight predictions of each
expert. It is a combination of weighed local models to approximate a dataset. The weight-
ing coefficients depend on objects in the dataset. Examples of multimodel are bagging,
gradient boosting [1] and random forest [2]. The paper [3] suggests that the contribution
of each expert to the answer depends on the object from the dataset.
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The main problem of multimodel construction is hight dependence of the resulted en-
semble on the initial value of the parameters. The authors propose to use the probability
approach to find optimal gate function parameters and local parameters, and proposes to
use various prior distributions of the parameters to improve stability of the multimodel.
The paper introduces a method, which use dependence between prior distributions to im-
prove the multimodel quality.
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Figure 1: An example of circles with different noise levels: (a) circle without noise; (b)
noisy radius circle; (c) noisy radius circle, and uniform noisy on image

As a practical example, the circles approximation on a binarized image are solved.
Examples of images are shown in fig. 1. In this paper, each expert is a linear model. A
gate function is a two-layer fully connected neural network.

Related work. Many papers on a mixture of experts are devoted to gateway function
selection: softmax, the Dirichlet process [4], neural networks [5] with softmax function on
the last layer. Some papers are devoted to the choice of the expert type. Papers [6, 7]
analyze linear models as experts. Papers [8, 9] analyze SVMs as experts. The paper [3]
contains an overview of various gate function and various expert types.

The method of mixture of experts has many applications. Papers [10, 11, 12] use
the mixture of experts in time series forecasting. Paper [13] uses the mixture of experts
in the task of recognizing handwritten numbers. Papers [14, 15, 16, 17] are devoted to
methods of text and speech recognition by using the mixture of experts. Paper [18] analyzes
the mixture of experts to recognize three-dimensional human movements. Paper [19] is
devoted to a review of the study results on the iris detection in the image. The methods
of highlighting the borders of the iris and pupil are described in papers [20, 21].

2 Problem statement of circle parameters estimation

There given binary image
M ∈ {0, 1}m1×m2 ,
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where 1 is a black pixel, an image foreground, and 0 is a white pixel, the image back-
ground. An image example is shown in fig. 1. The image M is mapped to a set of
coordinates C = {xi, yi}Ni=1. The pair of coordinates (xi, yi) is a black pixel in M:

C ∈ RN×2,

where N is the number of black pixels.
Let (x0, y0) be the center of the circle, and r is radius of the circle. The coordi-

nates (xi, yi) ∈ C is a circle locus of points defined by(
xi − x0

)2
+
(
yi − y0

)2
= r2.

Expand brackets:

(2x0) · xi + (2y0) · yi +
(
r2 − x20 − y20

)
· 1 = x2i + y2i . (2.1)

Rewrite equation (2.1) to set the linear regressions problem for all points in the dataset:

ŵ = arg min
w∈Rn

||Xw− y||, X = [C,1] , y =
[
x21 + y21, x

2
2 + y22, · · · , x2N + y2N

]T
. (2.2)

The parameters ŵ = [w1, w2, w3]
T reconstruct the circle parameters x0, y0, r:

x0 =
w1

2
, y0 =

w2

2
, r =

√
w3 + x20 + y20.

The solution of problem (2.2) reconstructs the circle parameters only if the number of
circles in an image is equal to one. The authors propose to use the multimodel for the
image, which consists of several circles. The multimodel is an ensemble of the linear models.
Each linear model approximates only one circle in the image. In this paper, multimodel is
a mixture of experts.

3 Problem statement of building a mixture of experts

Generalize one-circle approximation (2.2) problem to the case of several circles. Each circle
is a local model. The data for this case is

X ∈ RN×n, y ∈ RN (3.1)

where N is the sample size and n is the number of features. In this paper, n is equal to 3.

Definition 3.1. A model g is a local model on dataset X if g approximates some no-empty
subset X′ ⊂ X.

Definition 3.2. Call the multimodel f a mixture of experts

f =
K∑
k=1

πkgk
(
wk

)
, πk

(
x,V

)
: Rn×|V| → [0, 1],

K∑
k=1

πk
(
x,V

)
= 1, (3.2)

where gk is a local model, πk is a gate function, vector wk is some parameters of the local
model and V is some parameters of the gate function.
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This paper asserts the local model be linear model. The gate function is the two–layer
fully connected neural network

gk
(
x
)

= wT
kx, π

(
x,V

)
= softmax

(
VT

1σ
(
VT

2 x
))
, (3.3)

where V =
{
V1,V2

}
is a set of the gate function parameters.

The paper proposes to use a probabilistic approach to describe a mixture of experts.
Let y be a random variable with density function p

(
y|X

)
. Let density p

(
y|X, f

)
approxi-

mate truth density p
(
y|X

)
:

p
(
y|X, f

)
=

N∏
i=1

(
K∑
k=1

πkpk
(
yi|gk

(
xi
)))

, (3.4)

where f is the mixture of experts and gk,π are defined by (3.3).
Suppose that wk is the random variable with density function pk

(
wk

)
, and get joint

probability distribution of the target and the parameters:

p
(
y,W|X,V

)
=

K∏
k=1

pk
(
wk

) N∏
i=1

(
K∑
k=1

πkpk
(
yi|wk,xi

))
, (3.5)

where W =
{
w1,w2, · · · ,wK

}
. The optimal parameters is delivered by the evidence max-

imisation:
V̂ = arg max

V
p
(
y|X,V

)
.

4 Probabilistic statement of mixture of expert

To build the mixture of experts (3.2, 3.5), set the following probabilistic statement for the
dataset (3.1):

1) the likelihood pk
(
yi|wk,xi

)
= N

(
yi|wT

kxi, β
−1), where parameter β is the noise level,

2) the prior distribution for the parameters pk
(
wk

)
= N

(
wk|w0

k,Ak

)
, where w0

k is a
vector of size n× 1 and Ak is a covariance matrix,

3) the prior regularisation p
(
εk,k′ |Ξ

)
= N

(
εk,k′ |0,Ξ

)
, where Ξ is a covariance matrix

and εk,k′ = w0
k −w0

k′ .

The assumption 2) is the prior distribution for the parameters wk. It sets some restrictions
to the model. For example, if w0

k is [0,0,1], then the k-th local model fits with the most
probability a circle with parameters x0 = 0, y0 = 0, r = 1.

The assumption 3) is a prior regularisation. It sets restrictions on the prior distribution
parameters. For example, if diag

(
Ξ
)

= [0.001, 0.001, 1], then the centers of different circles,
which corresponds to different local models are equal.
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Combining assumptions 1), 2), 3) and equation (3.5), obtain the new likelihood:

p
(
y,W|X,V,A,W0,Ξ, β

)
=

N∏
i=1

(
K∑
k=1

πkN
(
yi|wT

kxi, β
−1)) ·

·
K∏
k=1

N
(
wk|w0

k,Ak

)
·

K∏
k,k′=1

N
(
εk,k′|0,Ξ

)
,

(4.1)

where A = {A1, · · · ,AK} .

Introduce a binary matrix Z. Its element zik is equal to 1 if and only if the i-th object
corresponds to the k-th local model. Using the binary matrix Z in (4.1) take logarithm
and obtain

log p
(
y,Z,W|X,V,A,W0,Ξ, β

)
=

=
N∑
i=1

K∑
k=1

zik

[
log πk

(
xi,V

)
− β

2

(
yi −wT

kxi
)2

+
1

2
log

β

2π

]
+

+
K∑
k=1

[
−1

2

(
wk −w0

k

)T
A−1k

(
wk −w0

k

)
+

1

2
log det A−1k −

n

2
log 2π

]
+

+
K∑
k=1

K∑
k′=1

[
−1

2

(
w0
k −w0

k′

)T
Ξ−1

(
w0
k −w0

k′

)
+

1

2
log det Ξ− n

2
log 2π

]
.

(4.2)
Set the new optimisation problem to optimise the evidence function. The function is
obtained by integrating equation (4.2) over parameters W,Z:

V,W0,A, β = arg max
V,W0,A,β

∫
W,Z

log p
(
y,Z,W|X,V,A,W0,Ξ, β

)
dWdZ. (4.3)
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5 EM–algorithm as a solver of optimisation problem

Let q
(
W,Z

)
be some density distribution of parameters W,Z. Rewrite the evidence:

log p
(
y|X,V,A,W0,Ξ, β

)
=

∫
W,Z

q
(
W,Z

)
log p

(
y|X,V,A,W0,Ξ, β

)
dWdZ =

=

∫
W,Z

q
(
W,Z

)
log

p
(
y,W,Z|X,V,A,W0,Ξ, β

)
p
(
W,Z|y,X,V,A,W0,Ξ, β

)dWdZ =

=

∫
W,Z

q
(
W,Z

)
log

p
(
y,W,Z|X,V,A,W0,Ξ, β

)
q
(
W,Z

)
p
(
W,Z|y,X,V,A,W0,Ξ, β

)
q
(
W,Z

)dWdZ =

=

∫
W,Z

q
(
W,Z

)p(y,W,Z|X,V,A,W0,Ξ, β
)

q
(
W,Z

) dWdZ+

+

∫
W,Z

q
(
W,Z

) q
(
W,Z

)
p
(
W,Z|y,X,V,A,W0,Ξ, β

)dWdZ =

= L
(
q,V,W0,A, β

)
+ DKL

(
q
(
W,Z

)
||p
(
W,Z|y,X,V,A,W0,Ξ, β

))
(5.1)

Using (5.1), we get lower bound of evidence:

log p
(
y|X,V,A,W0,Ξ, β

)
≥ L

(
q,V,W0,A, β

)
,

where L
(
q,V,W0,A, β

)
is called lower bound of evidence.

Use the expectation-maximization [22, 23] algorithm to find the solution to optimisation
problem (4.3). The EM-algorithm instead of log p

(
y|X,V,A,W0,Ξ, β

)
optimizes the

lower bound L
(
q,V,W0,A, β

)
.

E-step. E-step solves the optimisation problem:

L
(
q,V,W0,A, β

)
→ max

q
(
W,Z
),

where V,W0,A, β are fixed.
Let the joint distribution q

(
Z,W

)
satisfies the assumption of independence q

(
Z,W

)
=

q
(
Z
)
q
(
W
)

[23]. The symbol ∝ means that both sides are equal to up to an additive
constant. First, find the distribution q

(
Z
)
:

log q
(
Z
)

= Eq/Z log p
(
y,Z,W|X,V,A,W0,Ξ, β

)
∝

∝
N∑
i+1

K∑
k=1

zik

[
log πk

(
xi,V

)
− β

2

(
y2i − xT

i Ewk + xT
i Ewkw

T
kxi
)

+
1

2
log

β

2π

]

p
(
zik = 1

)
=

exp
(

log πk
(
xi,V

)
− β

2

(
xT
i Ewkw

T
kxi − xT

i Ewk

))∑K
k′=1 exp

(
log πk′

(
xi,V

)
− β

2

(
xT
i Ewk′wT

k′xi − xT
i Ewk′

)) .
(5.2)
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Using (5.2), we get that distribution q
(
zik
)

is the Bernoulli distribution with probability zik
from equation (5.2). Second, find the distribution q

(
W
)
:

log q
(
W
)

= Eq/W log p
(
y,Z,W|X,V,A,W0,Ξ, β

)
∝

∝
N∑
i=1

K∑
k=1

Ezik

[
log πk

(
xi,V

)
− β

2

(
yi −wT

kxi
)2

+
1

2
log

β

2π

]
+

+
K∑
k=1

[
−1

2

(
wk −w0

k

)T
A−1k

(
wk −w0

k

)
+

1

2
log det A−1k −

n

2
log 2π

]

∝
K∑
k=1

[
wT
k

(
A−1k w0

k + β
N∑
i=1

xiyiEzik

)
− 1

2
wT
k

(
A−1k + β

N∑
i=1

xix
T
i

)
wk

]
.

(5.3)
Using (5.3), we get that distribution q

(
wk

)
is the normal distribution with mean mk and

covariance matrix Bk:

mk = Bk

(
A−1k w0

k + β
N∑
i=1

xiyiEzik

)
, Bk =

(
A−1k + β

N∑
i=1

xix
T
i Ezik

)−1
.

M-step. M-step solves the optimisation problem:

L
(
q,V,W0,A, β

)
→ max

V,W0,A,β
,

where q
(
W,Z

)
are fixed density function. The distribution q

(
Z,W

)
is fixed, while the

lower bound L
(
V,W0,A, β

)
is maximized with respect to the parameters V,W0,A, β:

L
(
V,W0,A, β

)
= Eq log p

(
y,Z,W|X,V,A,W0,Ξ, β

)
=

=
N∑
i=1

K∑
k=1

Ezik

[
log πk

(
xi,V

)
− β

2
E
(
yi −wT

kxi
)2

+
1

2
log

β

2π

]
+

+
K∑
k=1

[
−1

2
E
(
wk −w0

k

)T
A−1k

(
wk −w0

k

)
+

1

2
log det A−1k −

n

2
log 2π

]
+

+
K∑
k=1

K∑
k′=1

[
−1

2

(
w0
k −w0

k′

)T
Ξ−1

(
w0
k −w0

k′

)
+

1

2
log det Ξ− n

2
log 2π

]
.

(5.4)
First, to find the optimal parameters V, use the gradient optimisation algorithm. It
convergences to some local maximum. Second, using (5.4), we get optimal value for Ak

∂L
(
V,W0,A, β

)
∂A−1k

=
1

2
Ak −

1

2
E
(
wk −w0

k

) (
wk −w0

k

)T
= 0,

Ak = Ewkw
T
k −w0

kEwT
k − Ewkw

0T
k + w0

kw
0T
k .
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Similarly, we get optimal value for β and for w0
k

∂L
(
V,W0,A, β

)
∂β

=
K∑
k=1

N∑
i=1

(
1

β
Ezik −

1

2
Ezik

[
y2i − 2yix

T
i Ewk + xT

i wkw
T
kxi
])

= 0,

1

β
=

1

N

N∑
i=1

K∑
k=1

[
y2i − 2yix

T
i Ewk + xT

i Ewkw
T
kxi
]
Ezik.

∂L
(
V,W0,A, β

)
∂w0

k

= A−1k
(
Ewk −w0

k

)
+ Ξ

K∑
k′=1

[
w0
k′ −w0

k

]
= 0,

w0
k =

[
A−1k + (K − 1) Ξ

]−1(
A−1k Ewk + Ξ

K∑
k′=1, k′ 6=k

w0
k′

)
.

(5.5)

Formulas (5.2–5.5) define an iterative procedure, which convergence to some local maxi-
mum of the optimisation problem (4.3).

6 Computational experiment

The computational experiment analyzes quality of various multimodels for circle approx-
imation. The experiment analyzes next multimodels: multimodel f1 without prior distri-
bution for the parameters, multimodel f2 with prior distribution (6.2) for the parameters
and multimodel f3 with prior regularisation. The approximation quality of model fi is

Sfi =
K∑
k=1

(
xk0 − xkpr

)2
+
(
yk0 − ykpr

)2
+
(
rk − rkpr

)2
, (6.1)

where xk0, y
k
0 , r

k are the true center and radius for k-th circle, xkpr, y
k
pr, r

k
pr are the predicted

center and radius for k-th circle.
To compare models with various prior distribution, use the log-likelihood without any

priors (3.4). The prior distribution for the parameters in the experiment is

p1
(
w1

)
∼ N

(
w0

1, I
)
, p2

(
w2

)
∼ N

(
w0

2, I
)
, (6.2)

where w0
1 = [0, 0, 0.1], w0

2 = [0, 0, 2].

Synthetic data with various types of noise in the image. The computational ex-
periment compares quality of mixture of experts f1, f2, f3 on a synthetic dataset. The syn-
thetic data were generated as two concentric circles with different noise levels. Synthetic 1
is the image without any noises, Synthetic 2 is the image with a noise radius and the Syn-
thetic 3 is an image with uniform noise. The fig. 2 shows results of multimodels f1, f2, f3.
All multimodels run 50 iterations of the EM-algorithm. Multimodels f2, f3 approximate
circles better than multimodel f1. Tab. 1 shows the approximation quality (6.1) for all
multimodels.
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Figure 2: The multimodel dependes on different prior distribution and dependes on dif-
ferent noise levels: (a)–(c) multimodel with prior regularization; (d)–(g) multimodel with
simple prior; (e)–(j) multimodel without any priors.

Table 1: The approximation quality (6.1) for all multimodels

Dataset Sf1 Sf2 Sf3
Synthetic 1 10−5 10−5 10−5

Synthetic 2 0.6 10−3 10−3

Synthetic 3 0.6 10−3 10−3
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Figure 3: The dependence of center and radius on the iteration number: (a)–(b) multimodel
with prior regularization; (e)–(d) multimodel with simple prior; (e)–(f) multimodel without
any priors.

Analysis of convergence on synthetic data. The experiment analyzes multimod-
els f1, f2, f3 during the EM-algorithm convergence. The multimodels were analysed on the
synthetic dataset Synthetic 3.

Fig. 3 shows the dependence of the radius and center on the EM-algorithm iteration
number. The multimodel f2 with prior distribution for the parameters approximates circles
better than multimodel f1 without any priors. The multimodel f3 with prior regularisation
approximates circles more stable than multimodel f2.
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Figure 4: The dependence of log-likelihood (3.4) on the iteration number.
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Figure 5: Visualization of convergence for the multimodel with prior regularisation.
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Figure 6: Visualization of convergence for the multimodel with simple prior.
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Figure 7: Visualization of convergence for the multimodel without any priors.

Fig. 4 shows the dependence of log-likelihood (3.4) on the EM-algorithm iteration num-
ber. The log-likelihood of multimodels f2, f3 is growing faster than multimodel f1. After
the 20-th iteration all three multimodels have the same log-likelihood.

Fig. 5-7 show learning process for multimodels f1, f2, f3. Fig. 7 shows multimodel f1,
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which does not approximate circles correctly. Fig. 5-6 show multimodels f2, f3, which
approximate circles correctly.

The experiment shows that multimodels f2, f3 with prior distribution for the parameters
approximate circles better than multimodel f1 without any priors.
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Figure 8: The dependence of center and radius on the noise level: (a)–(b) multimodel with
prior regularization; (c)–(d) multimodel with simple prior; (e)–(f) multimodel without any
priors.

Multimodels analysis depending on the noise level. The experiment analyzes de-
pendence of multimodels f1, f2, f3 on the noise level. The multimodels were analysed on

12



0.0 0.2 0.4 0.6 0.8
Pecentage of noise

−0.4

−0.2

0.0

lo
g
p(
y
|w
,x

)

Prior
Regular
Not Prior

Figure 9: The dependence of log-likelihood (3.4) on the noise level.

the synthetic dataset Synthetic 1, with adding various noise level. The lowest noise level
is equal to 0, when number of noise samples is equal to 0. The highest noise level is equal
to 1, when number of noise samples is equal to number of point in circles. Fig. 8 shows the
dependence of center and radius on the noise level. It shows that circle radius increases
with increasing noise level. The multimodels f2, f3 approximate circles center correctly, but
the multimodel f3 is more stable. Fig. 9 shows the dependence of log-likelihood (3.4) on
the noise level. It shows that log-likelihood (3.4) is the same for all multimodels, but the
fig. 8 shows that the approximation quality (6.1) depends on multimodels. This part of the
experiment shows that multimodel f3 with prior regularisation is the most stable model.

Real data. This part of the experiment analyzes multimodels f1, f2, f3 on the real data.
Fig. 10 shows the result of different multimodels. The multimodel f1 approximates incor-
rectly one of the circles. The multimodels f2, f3 approximate both circles correctly.

Fig. 11-13 show learning process for multimodels f1, f2, f3. Fig. 11 shows multimodel f1.
Fig. 12 shows multimodel f2. Fig. 13 shows multimodel f3.

This part of experiment shows that multimodels f2, f3 approximate circles better than
multimodel f1 even for the real images.

7 Conclusion

The paper compares multimodels with various prior distributions of model parameters. The
computational experiment hold on the concentric circles with different noises. The linear
models were used to approximate the circles in the image. The gate function is the two-
layer fully connected neural network. The experiment compares the multimodel with the
prior distribution and without it. The multimodel with prior distribution is more accurate
in comparison to the multimodel without it. Another experiment compares different types
of regularization. The experiment showed that multimodel with regularization is more
stable. The experiment shows that all models in this article are sensitive to outlines. To
solve this problem, the aouthors proposed to use a local model, which approximate noise.

The future work plannes to improve the multimodel by adding a prior distribution for
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Figure 10: Different multimodels on the real image: (a) source image; (b) binarize image;
(c) multimodel without any priors; (d) multimodel with simple prior; (e) multimodel with
prior regularisation.

−2 0

−1

0

1

1 epoch
−2 0

−1

0

1

3 epoch
−2 0

−1

0

1

5 epoch
−2 0

−1

0

1

10 epoch
−2 0

−1

0

1

15 epoch
−2 0

−1

0

1

2

25 epoch

Figure 11: Visualization of convergence for the multimodel without any priors.

the gate function parameters. It plannes to add a local model that approximates noise in
the data. It assumes that the probability of noise is low.
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