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Abstract We address the problem of outlier detection for more reliable credit
scoring. Scoring models are used to estimate the probability of loan default based
on the customer’s application. To get an unbiased estimation of the model pa-
rameters one must select a set of informative objects (customers). We propose
an object selection algorithm based on analysis of the covariance matrix for the
estimated parameters of the model. To detect outliers we introduce a new quality
function called specificity measure. For common practical case of ill-conditioned
covariance matrix we suggest an empirical approximation of specificity.

We illustrate the algorithm with eight benchmark datasets from the UCI ma-
chine learning repository and several artificial datasets. Computational experi-
ments show statistical significance of the classification quality improvement for all
considered datasets. The method is compared with four other widely used methods
of outlier detection: deviance, Pearson and bayesian residuals and gamma plots.
Suggested method performs generally better for both clustered and non-clustered
outliers. The method shows acceptable outlier discrimination for datasets that
contain up to 30–40% of outliers.
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1 Introduction

We consider the problem of detecting outliers in data samples. Important practical
applications of outlier detection can be found in decision problems in the insurance
sector, such as designing credit scorecards. The goal of credit scorecards is to
estimate the probability of loan default or other potential risks on the basis of
customer’s application. Design of a scorecard is usually based on analysis of credit
histories (Siddiqi 2006). Credit history databases contain millions of entries. Since
some entries may be corrupted or contain inadequate values, it is important to
select a set of reliable records to construct a high-quality credit scorecard.

Existing approaches to outlier detection split into into direct and indirect meth-
ods (Wisnowskia et al. 2001). Direct methods use stepwise add-delete procedures
to detect outliers. Indirect methods use special-purpose functions to estimate prob-
ability that an object belongs to the sample set. Sebert, Montgomery and Rol-
lier (Sebert et al. 1998) define outliers as non-cluster representatives. To cluster
inliers they compute Euclidean distance between objects represented by (predicted
value, residual) pairs. Kosinski (Kosinski 1998) presents a comparison of several
commonly used techniques for outlier detection, including graphical and analytical
methods. The latter include Cook’s Square distance (Cook and Weisberg 1989),
Mahalanobis Distance
(Rousseeuw and Zomeren 1990) and analysis of residuals (Albert and Chib 1995).
Kosinski concludes that outlier detection based on Mahalanobis distance is the
most efficient. Hardin and Rocke (Hardin and Rocke 2004) suggest to use the
Mahalanobis distance between clusters expected in the sample set. Filzmoser,
Maranna and Werner (Filzmoser et al. 2008) develop a method of outlier detection
for a sample set in a high-dimensional space.

We use the logistic regression model to estimate the probability of default (Bishop 2006,
Bishop and Nasrabadi 2006), since logit function is one of the most common link
functions for binary response models (Hahn and Soyer 2005, Hardin and Hilbe 2007).
We assume that the feature set (the fields of application form) is fixed and consider
sample objects as independent random variables. Application of logistic model to
the case of correlated objects is considered, for example, in (Hosmer et al. 2000).
To evaluate classification quality we use area under ROC curve (AUC) (Ling et al. 2003).
To prove that the classification quality improvement after removing outliers is sta-
tistically significant, we sample the AUC distribution and check obtained empirical
distribution for normality using ShapiroWilk test (Malkovich and Afifi 1973).

We propose a method of indirect outlier detection. For this purpose, we intro-
duce a specificity measure, which depends on the covariance matrix of the model
parameter estimates (Motrenko et al. 2014). We estimate the covariance matrix
using approximation of the likelihood function of the regression model around its
maximum (Motrenko et al. 2014). The idea of the proposed method comes from
the observation that parameter estimates are not robust in the presence of out-
liers (Croux and Haesbroeck 2003). In this paper we use this property to detect
outliers. Leaving out objects from the sample one by one, we estimate regression
parameters and analyze the change in parameter estimates. Since outliers have
stronger impact on regression parameters then regular objects, deleting an outlier
is more likely to result in a considerable change of estimated parameters. This
assumption motivated us to introduce a function on objects of the sample called
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the specificity measure. Greater change parameter estimates yield higher values of
specificity, associated with outliers.

This is not true for sample sets with high percentage of outliers, so the proposed
method is valid for sample sets with moderate number of outliers. Moreover, since
the method incorporates estimating regression parameters, it is not applicable
when the number of features is bigger than the number of objects or when they are
close to each other. However, this is not common in credit scoring, since the scoring
questionare has 10-100 fields whereas credit stories databases contain thousands
or millions of records.

We use data from the UCI machine learning repository to compare the pro-
posed method with alternatives. To provide more extensive comparison, in addi-
tion to consumer loans datasets (German dataset 1994, Australian dataset 1987)
we use the following benchmark datasets: heart disease in South Africa
(SAHD dataset 1993), wine quality (Wine data 1991), yeast dataset
(Yeast dataset 1996), breast cancer dataset (Breast cancer dataset 1992), contra-
ceptive usage dataset (Contraceptive dataset 1987) and housing dataset (Housing dataset 1978).

The paper is structured as follows. In Section 2 we formulate the problem
of parameter estimation in logistic regression and discuss the properties of the
optimization problem that allow us to introduce specificity as measure for outlier
detection. In Section 3 we propose a new method of outlier detection and a more
practical modification for the proposed method. In Section 4 we provide empirical
analysis of the proposed method and compare it to deviance, Pearson and bayesian
residuals (Albert and Chib 1995), gamma plots (Evans and Jones 2002).

2 Problem statement

Consider a sample set D = {(xi, yi)}. Let I = {1, . . . , m} 3 i denote a set of
indices for the sample set. By X denote the matrix X = [xT

1, . . . , xT
m]T, where m

is the size of the set D, and n is the number of features. By y = [y1, . . . , ym]T

denote a target vector, where yi ∈ {0, 1}; yi = 1 if the i-th record corresponds to
the lawn default case and yi = 0 if the i-th record corresponds to the non-default
case.

Suppose that yi is a realization of the Bernoulli random variable Yi ∼ Be(pi),
where pi is the probability of default. Let the random variables {Yi}mi=1 be mutually
independent. Furthermore, assume that pi is given by logistic regression model:

pi = f(xi,w) = fi =
1

1 + exp
(
−xT

iw
) , (1)

where w ∈ Rn is a vector of the model parameters. Model parameters ŵ maximize
data likelihood

ŵ = arg max
w∈Rn

L(y|X, w), (2)

where L(y|X, w) is the data likelihood function. The problem is to select a subset
(XB, yB) of reliable objects

XB = [xT
i ]

T, i ∈ B, yB = [yi]
T, i ∈ B,

where B ⊆ I is the index set of selected objects. An object xi is considered an
outlier if i ∈ I \ B. Further we use a cross-validation procedure to estimate the
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parameters and select the set B of indices of non-outliers. Let a random partition
I = S t T of the index set I split the dataset into training (XS , yS) and testing
(XT , yT ) samples. The training sample is used for parameters estimation, and
the testing sample is used for object selection. The object selection problem is to
detect outliers and remove them, maximizing likelihood of the regular data:

B = arg max
B⊆{1,...,m}

L
(
yT

⋂
B|XT ⋂

B, ŵ
)
, (3)

where

ŵ = arg max
w∈Rn, B⊆{1,...,m}

L(yB
⋂
S |XB⋂

S , w). (4)

Since random variables {Yi}, i ∈ B are mutually independent, we obtain the
following expression for data likelihood

L(yB|XB, w) =
∏
i∈B

fyii
(
1− fi

)1−yi ,
or, equivalently, the following expression for negative logarithm of likelihood func-
tion L:

l(w) = − lnL(yB|XB, w) = −
∑
i∈B

yi ln fi + (1− yi) ln(1− fi). (5)

The second derivative of l(w), or the hessian matrix, is given by

H =
∑
i∈B

xifi(1− fi)xT
i = XT

BRXB

Under assumption that the columns of the matrix X are linearly independent
the matrix H is positive definite and the negative loglikelihood function l(w) is
convex (Boyd and Vandenberghe 2004). Therefore, the likelihood function L(w)
has unique maximum and the problem (4) is well defined. Note that H is degen-
erate if there exists u 6= 0 such that Xu = 0.

Estimation of the model parameters. Since there is no analytical solution for the
optimization problem (4) we use the following iterative procedure to estimate ŵ.

Let ŵ0 be an initial estimation of parameter vector. Suppose that the (k−1)-th
iterative approximation ŵk−1 has already been computed. Using Newton-Raphson
method (Bishop 2006), we obtain k-th iterative approximation ŵk of ŵ:

ŵk = ŵk−1 −H−1∇l(ŵk−1) = ŵk−1 −
(
XTRX

)−1
XT(f − y). (6)

Given the initial parameter vector ŵ0 the procedure is well defined. Iterative
computation (6) terminates when ‖ŵk − ŵk−1‖2 < ε for some ε > 0.
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Estimation of covariance matrix for ŵ. The proposed method for outlier detection
involves estimation of the covariance matrix Σ of posterior distribution

p(w|X, y) =
p(y|X,w)p(w)

p(y|X)
(7)

of estimated parameters ŵ. Suppose the prior distribution p(w) is pseudo uniform.
Then, since p(y|X) is constant with respect to w, posterior distribution p(w|X, y)
is proportional to p(y|X, w)

p(w|X, y) ∝ p(y|X,w).

To estimate covariance matrix Σ of p(w|X, y) we use Taylor approximation of
l(w) = ln p(y|X,w) around its minimum w0. Since l(w) reaches its minimum value
in w0, we set ∇l(w0) = 0 and thus obtain a local approximation of loglikelihood
for w:

ln p(y|X, w) ∝ l(w)− l(w0) = ln
L(w)

L(ŵ)
≈ −1

2
(w −w0)TH(w −w0). (8)

Thus ŵ is locally normal
ŵ ∼ N (w0, H−1) (9)

with the covariance matrix Σ = H−1.

3 Specificity-based outlier detection

In this section we describe the proposed method of outlier detection. Consider an
object (xi, yi) from the training sample i ∈ S. If ŵ estimates, given by (4), differ
significantly for S and S \ {i}, then the object is called an outlier. Further we
introduce the specificity measure as a statistic for testing parameter difference for
significance.

Let ∆iw denote the difference between parameter vectors ŵi and ŵ

∆iw = ŵi − ŵ

where estimate ŵi is based on the training sample S without i-th object

ŵi = arg max
w∈Rn

L(w|XS\{i}, yS\{i}),

and w is estimated with respect to S according to (4). Further for each object
(xi, yi), i ∈ S we introduce the specificity Sp(xi, yi) measure as follows:

Sp(xi, yi) = (∆iw)TH(∆iw). (10)

and ŵ.
Since by (9) the estimates ŵ are locally normal, ∆iw follows normal distribu-

tion N (0, H−1) for every i ∈ B. Therefore, if the object (xi, yi) is not an outlier,
and H is not degenerate, then Sp(xi, yi) follows χ2 distribution with n degrees of
freedom:

Sp(xi, yi) = (∆iw)TH(∆iw) ∼ χ2(n). (11)

This allows us to use specificity Sp(xi, yi) as a test statistic to detect outliers:
given significance level α, the object (xi, yi) is considered an outlier if Sp(xi, yi)
exceeds the corresponding quantile of χ2(n).
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Modification of the object selection method. Application of the proposed method
is restricted to the cases of invertible H estimation and must be adapted for the
case of degenerate H. In the latter case specificity follows χ2 distribution with
rg(H) degrees of freedom instead of n as follows from (11). Since H is computed
with some fixed precision, one must specify some threshold λ0 ≥ 0 such that the
eigenvalue λ of H is set to zero if λ ≤ λ0. Moreover, since H is degenerate, the
procedure (6), which involves H inversion, is no longer applicable.

A common way to deal with inversion of ill-conditioned matrices is regulariza-
tion (Neumaier 1998). To regularize a degenerate covariance matrix H assume a
normal w ∼ N (w0, τI) prior distribution p(w) over w (Li and Goel 2006) with
covariance matrix τI for some τ > 0. Using (7) and (8), derive posterior distribu-
tion of the estimates ŵ:

ŵ ∼ N
(
w0,

(
H + 1

τ I
)−1

)
.

Regularizing hessian matrix H yields a regularized specificity

Spτ (xi, yi) = (∆iw)T
(
H + 1

τ I
)

(∆iw).

Note that Spτ (xi, yi)→ Sp(xi, yi) as τ →∞.
Introducing a normal prior distribution for w fixes the issue with the degenerate

matrix H inversion, but requires specifying an additional parameter τ ≥ 0. Further
we suggest an empirical approximation of specificity, which does not involve any
additional parameters. For this purpose we consider the sample estimation

Dj =

∑
i∈S (∆iwj)

2

|S| − 1
.

of variance Var(wj) for each element of parameter vector w = [w1, . . . , wn]. Using
the empirical variance Dj we introduce an approximation of specificity measure

Spw(xi, yi) =
n∑
j=1

(∆iwj)
2

Dj
, (12)

where Spw(xi, yi) is called the empirical specificity. This approximation of Sp(x, y)
will be used in experiments to implement the proposed method. The empirical
specificity Spw(x, y) is preferable to Sp(x, y) for object selection as Spw(x, y)
does not depend on possibly ill-conditioned or even degenerate matrix H. Further
we demonstrate that the empirical specificity Spw(x, y) induces nearly the same
order on the training sample and thus can be used to detect outliers instead of
Sp(x, y).

4 Computational experiment

The aim of the computational experiment is to analyze the suggested method for
object selection. We use four benchmark datasets from the UCI machine learning
repository. Some datasets originally were construsted for multiclass classefication.
In such cases we artificially reduced them to binary classification. The details are
given below.
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1. German cash loans dataset (German dataset 1994) contains 1000 instances, 24
attributes, 2 classes.

2. Heart disease in South Africa dataset (SAHD dataset 1993) contains 462 in-
stances, 13 attributes, 2 classes.

3. Wine quality dataset (Wine data 1991) contains 4898 instances, 11 attributes
and 2 classes. For this dataset class labels range from 0 to 10 indicating wine
quality. We assigned y = 0 class labels to low quality (0–5) wine samples and
y = 1 class labels to high quality (6–10) wine samples.

4. Yeast dataset (Yeast dataset 1996) has 892 instances, 8 attributes and 2 classes.
The dataset contains information about protein localization in cell. We used
two biggest classes from this dataset for classification.

5. Housing dataset(Housing dataset 1978) The dataset contains information on
house prices in Boston. Houses priced over 25,000$ were labeled as y = 1, ones
with prices below 25,000$ were labeled as y = 0. The dataset contains 506
instances, 13 attributes and 2 classes.

6. Breast cancer dataset (Breast cancer dataset 1992). This dataset contains 699
instances, 9 attributes, 2 classes.

7. Contraceptive dataset (Contraceptive dataset 1987). For this dataset class la-
bels may take 3 values, indicating the usage of contraceptives: 1 for no usage, 2
for long-term usage, and 3 for short-term usage. We assigned y = 0 class labels
to no usage class and y = 1 to both long-term and short-term usage classes.
The dataset contains 1473 instances, 9 attributes and 2 classes.

8. Australian cash loans dataset (Australian dataset 1987) contains 690 instances,
14 attributes, and 2 classes.

All the attributes in all cases are numerical. We use logistic regression to solve the
classification problem and evaluate classification quality with AUC measure (Ling et al. 2003).
Further we prove that quality improvement concerned with removing outliers from
the sample D is statistically significant.

Firstly we compare two specificity criteria, Sp(x, y) (10) and Spw(x, y) (12).
To demonstrate that these measures are equivalent, we show that they induce
nearly the same order on the training sample. The solid lines in Figures 1, 2 show
the plot of the normalized specificity Sp(x, y) versus object index i, with objects
(xi, yi) ordered by Sp(x, y) in descending order. Similarly, we sort the objects of
the sample D by Spw(x, y) in descending order and plot the resulting curve with
the dashed 1, 2. Note that for all tested datasets there are few objects with high
specificity Sp(x, y) or empirical specificity Spw(x, y).

Further we compute Kendall and Pearson rank correlation coefficients between
Sp(x, y) and Spw(x, y) (see Table 1). For all datasets, except for the yeast dataset,
we observed strong positive linear and monotonous connection between empirical
specificity Spw(x, y) and specificity Sp(x, y): both Kendall and Pearson rank cor-
relation coefficients are close to 1. For yeast dataset, Pearson correlation between
Sp(x) and Spw(x, y) is moderate, but Kendall correlation is close to 1. In the
experiments with artificial data, which we will discuss later in this Section, we ob-
served correlations between Sp(x) and Spw(x, y) above 0.8 for Pearson correlation
and above 0.7 for Kendall correlation even for high contamination fractions. Thus
the order induced by empirical specificity Spw(x, y) on a sample set is nearly the
same as the order induced by Sp(x, y). Since empirical specificity does not involve
ill-conditioned (or even degenerate) matrix H, it is preferable to use Spw(x, y) for
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(a) SAHD data. (b) Loans data.

(c) Wine data. (d) Yeast data.

Fig. 1: Comparison of specificity functions Sp(x) and Spw(x).

object selection, and we will use it in our experiments to detect outliers. To esti-

Table 1: Correlations of specificities Sp(x, y) (10) and Spw(x, y) (12).

Data \ Correlations Pearson Kendall
SAHD 0.9736 0.9132
Loans 0.9794 0.9377
Wine 0.9528 0.9028
Yeast 0.5230 0.8597

Housing 0.8903 0.91505
Breast cancer 0.9657 0.9760
Contraceptive 0.9291 0.8819

Australian loans 0.9763 0.9343

mate the quality of the proposed method we train logistic model (1) two times —
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(a) Housing data. (b) Breast cancer data.

(c) Contraceptive data. (d) Australian loans data.

Fig. 2: Comparison of specificity functions Sp(x) and Spw(x).

before and after removing outliers — and compute corresponding AUC measures.
Table 2 shows the increase of AUC after outlier extraction for both samples.

Table 2: Change in AUC caused by outlier filtering based on the proposed

object selection procedure.

Data AUC before selection AUC after selection # of deleted objects
SAHD 0.7948 0.8275 15 out of 462
Loans 0.8179 0.8779 50 out of 1000
Wine 0.7992 0.8105 48 out of 4898
Yeast 0.7123 0.7332 18 out of 892

Housing 0.9585 0.9891 14 out of 506
Breast cancer 0.9943 0.9993 15 out of 699
Contraceptive 0.6799 0.7023 33 out of 1473

Australian loans 0.9351 0.9638 22 out of 690
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(a) Loans data. Training.
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(b) Loans data. Testing.
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(c) SAHD data. Training.
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(d) SAHD data. Testing.

Fig. 3: Empirical distribution of AUC and its normal approximation for loans and
heart disease data.

Since classification quality depends on both training (XS ,yS) and test (XT ,yT )
samples, the increase of AUC is possible even after removing several objects from
the sample at random. To prove that AUC improvement after removing outliers is
statistically significant we test the hypothesis H0 that the improvement is caused
only by reduction of the sample set size.

To test H0 hypothesis, we estimate its significance level p through the following
procedure. We sample at random 1000 subsets of a smaller size from each tested
dataset. Denote the j-th generated subset by Dj . We randomly split Dj into train-
ing and testing samples 50 times. Table 3 presents subsampling information and
training sizes for each dataset. For each subset Dj we estimate model parameters
ŵj using procedure (2) and compute the corresponding AUC(j) value. Thus we
obtain a number of observations of AUC values for both training and test samples.
We use them to compute the empirical distribution of AUC. Then an estimate of p
is the share of samples Dj with AUC(j) value higher than AUC reached after ob-
jects selection. Since even for 1000 generated samples there is no Dj with AUC(j)
higher than AUC obtained after object selection, this definition yields p = 0.

To obtain non-zero observed significance level p, we use normal approximation
of the empirical distribution of AUC and test empirical distribution for normality
using Shapiro and Wilk test. Figures 3– 6 show histograms for the empirical dis-
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(d) Yeast data. Testing.

Fig. 4: Empirical distribution of AUC and its normal approximation for wine and
yeast data.

Table 3: Initial sample size, size of reduced sample and training sample for each
dataset.

Data Sample size Resampling size Training size
SAHD 462 447 300
Loans 1000 950 690
Wine 4898 4840 3000
Yeast 892 874 550

Housing 506 492 350
Breast cancer 699 684 50
Contraceptive 1473 1440 800

Australian loans 690 668 400

tributions of AUC(j), j = 1, . . . , 1000 for training and testing samples and their
normal approximations.

The properties of empirical distributions and their normal approximations are
summarized in Table 4. AUC values given in the first row of the table reflects
classification quality for training and testing samples after removing outliers.
Further rows of Table 4 present statistical properties of the sampled AUC(j),
j = 1, . . . , 1000 for training and testing samples. For all considered datasets apart
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Table 4: Empirical distributions of AUC and their normal approximations.

Loans SAHD

Properties Train Test Train Test

AUC value 0.8819 0.8308 0.8507 0.8093

AUC expectation estimate, m̂ 0.8233 0.7889 0.7994 0.7722

AUC variance estimate, σ̂2 1.75 ·10−5 8.3 ·10−5 3.7 ·10−5 1.3 ·10−4

AUC standard deviation estimate, σ̂ 0.0042 0.0091 0.0061 0.011

|AUC− m̂|/σ̂ 14.0 6.8 5.15 3.32

Observed p-value for Shapiro-Wilk
test, pSW

0.2655 0.2364 0.2786 0.7879

Observed signif. level for H0, p0 0 5.3 ·10−12 1.3 ·10−7 4.6 ·10−4

Wine Yeast

Properties Train Test Train Test

AUC value 0.8109 0.8084 0.7346 0.7225

AUC expectation estimate, m̂ 0.7998 0.7968 0.7142 0.6965

AUC variance estimate, σ̂2 3.26 ·10−6 7.8 ·10−6 2.4 ·10−5 5.8 ·10−5

AUC standard deviation estimate, σ̂ 0.0018 0.0028 0.0049 0.0076

|AUC− m̂|/σ̂ 6.15 4.15 4.18 3.41

Observed p-value for Shapiro-Wilk
test, pSW

0.3103 0.6989 0.5326 0.4288

Observed signif. level for H0, p0 3.9 ·10−10 1.7 ·10−5 1.4 ·10−5 3.2 ·10−4

Housing Breast cancer

Properties Train Test Train Test

AUC value 0.9900 0.9826 0.9999 0.9976

AUC expectation estimate, m̂ 0.9609 0.9456 0.9991 0.9856

AUC variance estimate, σ̂2 7.6 ·10−6 4.2 ·10−5 9.4 ·10−7 1.1 ·10−5

AUC standard deviation estimate, σ̂ 0.0028 0.0064 0.00097 0.0033

|AUC− m̂|/σ̂ 10.55 5.75 0.82 3.62

Observed p-value for Shapiro-Wilk
test, pSW

0.0834 0.1199 0 0

Observed signif. level for H0, p0 0 4.6 ·10−9 0.2050 1.5 ·10−4

Contraceptive Australian loans

Properties Train Test Train Test

AUC value 0.7048 0.6881 0.9647 0.9567

AUC expectation estimate, m̂ 0.6831 0.6633 0.9372 0.9207

AUC variance estimate, σ̂2 2.28 ·10−5 3.35 ·10−5 1.0 ·10−5 2.5 ·10−5

AUC standard deviation estimate, σ̂ 0.0048 0.0058 0.0032 0.0050

|AUC− m̂|/σ̂ 4.56 4.29 8.67 7.25

Observed p-value for Shapiro-Wilk
test, pSW

0.1596 0.7949 0.3047 0.3966

Observed signif. level for H0, p0 2.6 ·10−6 8.8 ·10−6 0 2.1
·10−13
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(c) Breast cancer data. Training.
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Fig. 5: Empirical distribution of AUC and its normal approximation for housing
and breast cancer data.

from breast cancer dataset the observed significance level for H0 is less than 10−3

both for training and testing samples. This corresponds to more than 3 standard
deviations from the mean value. Therefore, the hypothesis H0 is rejected. Thus we
conclude that object selection has statistically significant effect in terms of AUC
value. For breast cancer dataset this does not hold for training sample because
the value of AUC reached before outlier filtering is already close to the maximum
possible value of 1. The same reason causes the deviation from normality for this
dataset as shown by low p-value for Shapiro-Wilk test.

Filtering clustered and non-clustered outliers. In this paragraph we study how
the proposed algorithm performs in application to artificial datasets. To generate
artificial datasets we consider two ways of modelling outliers, namely clustered
and non-clustered outliers. Non-clustered outliers are individual atypical objects.
Detecting such outliers may be seen as a problem of one-class classification. Clus-
tered outliers share some common properties and may be seen as objects from
another class. Using the AUC value of 0.7 as the threshold for acceptable dis-
crimination (Hosmer et al. 2000), we define the maximum contamination fraction
(share of outliers) for which the AUC is still above the threshold.

Artificial data with non-clustered outliers is generated as follows. Features xi
are sampled from normal distribution N(0, I), where I is 2 × 2 identity matrix.
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Fig. 6: Empirical distribution of AUC and its normal approximation for contra-
ceptive and australian loans data.

Objects are labeled with yi = 1 for xi if x2 > 0 and yi = 0 otherwise. Outliers are
sampled from the same distribution but labeled using the opposite rule: yi = 0 for
xi if x2 > 0 and yi = 1 otherwise. Figure 7a shows the generated sample for 1000
regular objects and 200 outliers.

Artificial data with clustered outliers is generated as follows. Non-outliers are
generated from N(0, I), where I is 2 × 2 identity matrix. For non-outliers we
assign yi = 1 for xi if x2 > 0 and yi = 0 otherwise. Outliers are generated from
N([2, 2]T, 0.5I), where I is 2×2 identity matrix. All outliers have the class label of
0. Figure 7b shows the generated sample for 1000 regular objects and 200 outliers.

We examined the proposed method of outlier detection for various contam-
ination fractions from 0 to 50%. Figure 8 shows the dependence of AUC after
removing outliers on contamination fractions.

For non-clustered outliers the threshold of 0.7 is reached for contamination
fraction of 41.1%. For clustered outliers the same threshold is reached for con-
tamination fraction of 33.3%. These results show that the method is applicable
even for datasets with high shares of outliers. However, the method performs
better for datasets with non-clustered outliers. Note that for both clustered and
non-clustered outliers for all considered contamination fractions the correlation
between specificity and empirical specificity is above 0.8 for Pearson correlation
and above 0.7 for Kendall correlation. Thus even for highly-contaminated datasets
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Fig. 7: Artificial datasets having clustered and non-clustered outliers.

(a) AUC dependence on contamina-
tion fraction. Non-clustered outliers.

(b) AUC dependence on contamina-
tion fraction. Clustered outliers.

Fig. 8: Dependence of AUC on contamination fraction.

empirical specificity (12) can be used instead of specificity (10) in case of ill-
conditioned hessian matrix H.

Comparison to other methods. In this paragraph we compare introduced speci-
ficity measure with four other widely used for outliers filtering measures: bayesian,
Pearson, deviance residuals (Albert and Chib 1995) and gamma plots based mea-
sure (Evans and Jones 2002). However, though Pearson and deviance residuals are
defined differently, they induce the same order on objects and therefore give the
same results for outliers filtering.

We compare the proposed method to alternatives using cross validation. The
sample is splitted into learning and testing samples. We use apply each method
to detect outliers and remove them from the learning sample. Each time we use
filtered learning sample to train the model and classify the testing sample. We
compare methods measuring classification quality in terms of AUC.

For comparison we use UCI benchmark datasets as well as artificial datasets
described above. For each dataset we split it into learning and testing sample
100 times. Table 5 lists AUC values for the filtered datasets and the results of
testing AUC difference for significance for different methods. Column specificity
corresponds to the results obtained with suggested method for outliers filtering
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Table 5: Comparison of outlier detection methods.

UCI data Pearson /
deviance

Bayes Gamma Specificity tp tb tg

SAHD 0.7716 0.7676 0.7722 0.7661 -1.6395 -0.448 -1.818
Loans 0.7868 0.7864 0.7828 0.7802 -2.7093 -2.5345 -1.0673
Wine 0.7977 0.7974 0.7972 0.7970 -0.8471 -0.4220 -0.2471
Yeast 0.6845 0.6951 0.6937 0.6944 5.8773 -0.3997 0.4233
Housing 0.9420 0.9435 0.9388 0.9439 11.4120 2.1089 30.6347
Breast cancer 0.9923 0.9917 0.9921 0.9923 -0.7188 15.1958 2.7909
Contraceptive 0.6609 0.6595 0.6564 0.6590 -1.5758 -0.4427 2.2328
Australian loans 0.9116 0.9123 0.9172 0.9145 4.0912 3.2093 -3.8142

Artificial
data

Pearson /
deviance

Bayes Gamma Specificity tp tb tg

Non-clustered, 9.1% 0.8997 0.9021 0.9031 0.9002 0.2450 -1.1300 -1.7346
Non-clustered*,
9.1%

0.8945 0.8956 0.8956 0.8958 0.8014 0.1583 0.1324

Non-clustered,
23.1%

0.7646 0.7653 0.7885 0.7665 0.7945 0.5036 -10.9947

Non-clustered*,
23.1%

0.7671 0.7593 0.7692 0.7694 0.9949 4.3273 0.0926

Non-clustered,
33.3%

0.6673 0.6679 0.6680 0.6680 0.6450 0.1075 0.0305

Non-clustered*,
33.3%

0.5372 0.6666 0.5817 0.6681 64.5832 0.7482 42.6279

Clustered, 9.1% 0.8885 0.9261 0.8673 0.9269 20.9410 0.4443 32.5022
Clustered*, 9.1% 0.8740 0.9515 0.8877 0.9541 66.9012 2.1318 55.4587
Clustered, 16.7% 0.8393 0.8471 0.8275 0.8456 2.5400 -0.6264 7.2975
Clustered*, 16.7% 0.8379 0.8305 0.8112 0.9060 44.4005 49.1751 61.7457
Clustered, 23.1% 0.8107 0.8171 0.7975 0.8174 3.4906 0.1210 10.3676
Clustered*, 23.1% 0.8105 0.7923 0.7945 0.8113 0.2828 6.5297 5.7736
Clustered, 33.3% 0.7860 0.7856 0.7872 0.7853 -0.4075 -0.1803 -1.1061
Clustered*, 33.3% 0.7675 0.7762 0.7713 0.7671 -0.1078 -2.4158 -1.1150

while columns Pearson/deviance, Bayes and Gamma correspond to the results
obtained with competitive methods.

Denote by AUCp, AUCb, AUCg and AUCs values of AUC for testing sam-
ple observed using Pearson (deviance) residuals, bayesian residuals, gamma plot
method and specificity to filter outliers in learning sample respectively. Student’s
t-statistics for significance of AUCs - AUCp, AUCs - AUCb and AUCs - AUCg
correspondingly are denoted by tp, tb and tg.

Table 5 lists the results of comparison. For each artificial dataset the table
indicates whether it has clustered or non-clustered outliers and its contamination
fraction. Asterisks mark the cases where a share of removed objects exceeded
the actual contamination fraction for all methods. Table 5 shows similar results
for all 8 UCI benchmark datasets. The suggested method is the best one only
for one dataset out of eight considered ones. However, as the values tp, tb and
tg demonstrate, most of the differences between methods are insignificant. If we
consider only the cases where the differences are significant (|t| > 2), we find that
the suggested method outperforms its alternatives on one versus one basis for 3
benchmark dataset while being significantly worse only for a single benchmark
dataset.
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For artificial datasets the proposed method performs generally better for both
clustered and non-clustered outliers. For non-clustered outliers suggested method
and method based on gamma plots show similar performance while for clustered
outliers the latter method works much worse than the suggested one. The values of
tp, tb and tg are especially high in the case where regular objects were detected as
outliers. One possible explanation for this is that both pearson/deviance residuals
and bayesian residuals recognise objects as outliers if they are poorly described by
the model. This property can be beneficial if the dataset has a small number of
outliers (Kosinski 1998). However, for datasets with high contamination fraction
such methods are not effective. Specificity can be more effective because it esti-
mates the impact of each object on the model stability instead of measuring how
well the object fits the model.

Conclusion

In this paper we consider the problem of object selection in banking credit score-
cards construction. To design a reliable banking credit scorecard one should select
an informative set of objects for the training set. This paper proposes a new method
for outlier detection. The parametric scoring model is constructed as a logistic re-
gression model using the selected sample set. The method is based on the newly
introduced specificity measure. Specificity measures the impact of each object of
the sample on regression parameters. We used the fact that specificity follows χ2

distribution for non-outliers to perform filtering. To adapt the proposed method
for the common case of ill-conditioned hessian matrix we introduce the empirical
specificity, which does not involve inversion of hessian matrix. Computational ex-
periments show high positive and monotonous correlation between specificity and
empirical specificity.

We compare our method to Pearson residuals, bayesian residuals, and gamma-
plots using rel and artificially generated data. For real datasets we find that the
proposed method wins over the alternatives on one-versus-one basis and performs
generally better for artificial datasets with both clustered and non-clustered out-
liers.

We observe reasonable quality for artificial datasets with up to 40% of non-
clustered outliers and 30% of clustered outliers. To process sample sets with larger
clusters of outliers one may use multilevel model or mixture of models. This is the
subject to the further research.
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